AEROMODELISMO-HOBBYMODELISMO

AEROMODELISMO-HOBBYMODELISMO

ANIMAÇAO

SEJAM TODOS BEM VINDOS !

PLANTAS,VIDEOS,MONTAGENS TUDO SOBRE AEROMODELISMO

Postagens populares

combinaçoes perfeitas

combinaçoes perfeitas

CONTADOR DE VISITAS

free counters

quarta-feira, 10 de dezembro de 2014

O Balanceamento Correto das Hélices

Os atuais modelos acrobáticos são desenhados na procura do máximo desempenho. Assim sendo, a estrutura dos melhores modelos são projetadas para terem resistência e o mínimo de peso compatível com os esforços impostos pelas manobras. O equilíbrio entre peso e resistência, além de outros fatores, permite que sejam feitas manobras anteriormente consideradas impossíveis. Para que o conjunto que forma a máquina acrobática funcione perfeitamente e com segurança, é necessário além dos cuidados com o vôo em si, respeitando o envelope do aeromodelo, uma escolha criteriosa dos componentes e acessórios. A hélice é um destes componentes. Sua escolha para se conseguir máxima performance depende de vários fatores, mas para a saúde estrutural de qualquer modelo não há dúvidas; o seu balanceamento é fundamental. Um motor potente com uma hélice e/ou spinner desbalanceados fragilizam de tal forma principalmente os modelos para manobras 3D com suas estruturas projetadas como descrito acima, que trincas e rachaduras logo aparecem encurtando em muito a vida do modelo quando não acarretam falha estrutural sem aviso! Portanto vale a pena aqui repetirmos os procedimentos para o correto balanceamento das hélices (e spinners). O Balanceamento Correto O modelista coloca a hélice no balanceador e quando a hélice pára por duas ou três vezes na horizontal considera o balanceamento pronto. Não é o caso! Um interessante artigo de Jim Newman publicado na revista Model Airplane News chama a atenção para o fato que nesta condição a hélice está apenas 50% balanceada! Se uma hélice pára horizontalmente sempre com a mesma borda para baixo, esta borda está pesada. Antes de fazer o balanceamento, verifique a posição do furo. Este deverá estar exatamente centralizado. Verifique a distância do furo até as pontas das pás e seu alinhamento (ao girar a hélice suas pontas deverão passar exatamente sobre o mesmo ponto). Use o seguinte processo para balancear corretamente suas hélices: a) Marque uma linha longitudinal passando exatamente pelo centro da hélice. b) Faça 4 marcas (A, B, C e D) uma em cada quadrante. c) Coloque a hélice verticalmente no balanceador com a pá marcada A-C para cima. d) Se a pá A-C “cair” no sentido anti-horário, por exemplo, então a área do bordo de ataque A está pesada e deverá ser lixada com cuidado (fig. 1). Da mesma forma se “cair” no sentido horário, a área do bordo de fuga C é que está pesada, é ela que deverá ser lixada (fig. 2). Obs. Não lixe a face inferior da hélice, lixe suavemente a parte superior. e) Quando a hélice consistentemente parar na diagonal, como no caso ilustrado na fig. 3, a área do bordo de ataque D deverá ser lixada; no caso da fig.4 é a área do bordo de fuga B que está pesada. f) O balanceamento estará completo quando a hélice parar aleatoriamente em posições diferentes sempre que for movimentada. Finalizando o Procedimento Após feito o balanceamento na hélice de madeira é interessante selar com verniz a madeira exposta. Algumas poucas “passadas” com lixa fina restaura novamente o balanceamento. Com hélices de nylon reforçado o uso de um pano com polidor de metais retorna o brilho natural do material. Não se esqueça de também balancear o spinner usando o mesmo procedimento feito com a hélice; retirando cuidadosamente material da parte mais pesada no interior do spinner. Isto feito, você sentirá a diferença!

Setups dos rádios DX7 e XP7202

Para se ter uma visão das possibilidades de programação dos rádios computadorizados é muito importante entender o conceito das funções e o funcionamento dos canais master (mestre) e slave (escravo ou irmão) nas mixagens. Portanto são essenciais a leitura atenta do manual e a compreensão das funções através de experiências, ou seja; acionando os servos e observando os resultados. Não faz sentido, por exemplo, o uso de um cabo reversor de servos, se seu rádio tem mixagem programável que possibilita o uso de dois canais para acionar cada metade de um profundor com todas as possibilidades de ajustes para cada servo. Aqui estão reproduzidas as orientações do famoso piloto/projetista Mike McConville para fazer o setup mais adequado e mais rápido para um modelo com um servo instalado em cada metade do profundor e um servo/canal para cada metade dos ailerons com ou sem o uso dos flaps nos rádios Spektrum DX7 e JR XP7202: PROFUNDOR COM DOIS SERVOS E AILERONS COM DOIS SERVOS - SEM FLAPS Inicialmente vamos conectar os servos do profundor e do aileron ao receptor: 1. Profundor do lado direito (visto por trás do modelo) conectado no canal ELEV. 2. Profundor do lado esquerdo conectado no canal AUX 2. 3. Aileron do lado direito conectado no canal AIL. 4. Aileron do lado esquerdo conectado no canal FLAP (AUX 1). 5. Leme e motor nos respectivos canais. Programação do transmissor: 1.Entre no modo de Set-up (mantenha simultaneamente apertados para baixo os botões SCROLL e SELECT enquanto liga o transmissor). 2. Navegue com o botão SCROLL até a tela INPUT SELECT. 3. É importante inibir todas as chaves e botões que possam atuar nos canais slave (AUX2 e FLAP) para que não aconteça de você inadvertidamente acionar um comando não esperado. Para isso, selecione e com o botão ADJUST coloque AUX em INH, AUX2 TRIM em INH, FLAP em INH, FLAP TRIM em INH. 4.Navegue com o botão SCROLL até a tela WING TYPE. 5. Ative a função FLAPERON. Set-up do Profundor: 1.Aperte simultaneamente DOWN e SELEC para gravar as modificações e aperte CLEAR para passar a transmitir. Acesse a Modalidade de Funções (modo normal de programação), apertando simultaneamente o botão DOWN (botão scroll para baixo) e SELECT. 2. Vá para a Mixagem Programável 6 (PROG.MIX6) (ou PROG.MIX5 pois, as mixagens programáveis 5 e 6 são as que tem o trim funcionando nos dois canais mixados). aperte o botão ADJUST para ativá-la. Coloque ELEV como master e AUX2 como slave. 3.Vá para a tela SUB TRIM e ajuste o neutro do profundor do lado direito com o canal ELEV e o neutro do profundor do lado esquerdo com o canal AUX2. 4.Vá até TRAVEL ADJUST. Ajuste o curso do profundor do lado direito com o ELEV ajustando o percentual correto de movimento para baixo (D) e para cima (U). 5.Volte para a PROG.MIX6 e regule o curso do profundor do lado esquerdo para acompanhar o curso do lado direito usando os valores de mixagem para cada direção dos stick. Set-up do Aileron: 1.Vá para a tela SUB TRIM e no canal AILE ajuste o neutro do aileron do lado direito. O neutro do aileron do lado esquerdo é justado no canal FLAP. 2. Vá para a tela TRAVEL ADJUST. Ajuste o curso desejado (a quantidade de movimento) para o aileron do lado direito usando AILE. 3. Ajuste o curso desejado (a quantidade de movimento) para o aileron do lado esquerdo para equipará-lo ao movimento do aileron direito usando FLAP. Daqui para a frente as funções Dual Rate, exponencial e mixagens programáveis irão funcionar normalmente como se o profundor e os ailerons estivessem ligados a apenas um canal. AILERON DUPLO (1 servo para cada aileron) COM FLAPS As conexões no receptor: 1. Aileron direito no canal AIL 2. Aileron esquerdo no canal AUX 2 3. Flap no canal Flap (AUX 1) 4. Leme, profundor e motor nos canais normais. Programação do transmissor: 1.Entre no modo de Set-up (mantenha simultaneamente apertados para baixo os botões SCROLL e SELECT enquanto liga o ransmissor). 2. Navegue com o botão SCROLL até a tela INPUT SELECT. 3. Selecione AUX2 e com o botão ADJUST coloque AUX2 em INH, AUX2 TRIM em INH e deixe FLAP em SYSTEM. Coloque FLAP TRIM em INH. Isso desliga o canal AUX2 da chave. 4.Navegue com o botão SCROLL até a tela WING TYPE. 5. NÃO ative Flapperon na tela WING TYPE. O Flapperon tem que estar DESATIVADO. Setup do Aileron: 1.Aperte simultaneamente DOWN e SELEC para gravar as modificações. Aperte CLEAR para passar a transmitir. Vá para tela do modo normal de Programação apertando simultaneamente para baixo os botões SCROLL e SELECT. 2. Acesse a tela P-MIX6. Coloque AILE como master e AUX2 como escravo. Coloque os valores de mixagem em 100% em ambas as direções do stick. 3.Vá para a tela SUB TRIM e ajuste o neutro do aileron direito com o canal AILE e o neutro do aileron esquerdo através do canal AUX2. Antes disso, se a direção de um ou ambos os ailerons estiver trocada, vá para a tela REVERSING SW e faça a reversão do canal apropriado (2, 7 ou ambos). 4.Vá para a tela TRAVEL ADJUST. Ajuste o curso desejado (a quantidade de movimento) para o aileron do lado direito usando AILE. Setup do Flap: 1.Entre no modo normal de programação. 2. Vá para a tela SUB TRIM e coloque os flaps no neutro usando o canal FLAP. 3. Vá para a tela FLAP SYS. Ajuste o curso desejado para cada uma das 3 posições da chave do Flap. Você pode também colocar aqui, uma compensação de profundor para cada uma das 3 posições dos flaps. (Normalmente será 0 para a posição neutra e as outras de acordo com o necessário após testar em vôo as posições intermediária e total dos flaps.)

Como verificar uma célula de bateria descarregada

Um pacote de pilhas recarregáveis contém múltiplas células elétricas. Estas são conectadas em séries para dar a bateria uma maior voltagem. Se você achar que a sua bateria descarrega rapidamente, ou não carrega o seu aparelho adequadamente, não descarte o pacote de pilhas: Verifique a bateria para um celular descarregado. Um celular descarregado reduz a capacidade de energia da bateria. Substituir uma célula elétrica descarregada é consideravelmente,Carregue sua bateria usando um carregador até que esta esteja cheia. Uma vez que esteja carregada, desconecte o carregador e deixe a bateria por muitas horas; durante à noite é o melhor. Celulares bons retêm a bateria enquanto os ruins descarregam facilmente.e mais barato do que comprar um pacote de Remova a cobertura da bateria. Ou remova os pequenos parafusos usando uma chave de fenda, ou desafivele os clipes que seguram a cobertura no lugar. Estas são, normalmente, clipes articulados, assim insira uma chave de fenda debaixo do clipe e alavanque a junta aberta. As células elétricas da bateria estão visíveis.Leia as informações sobre a voltagem das células. As baterias celulares produzem 1,2 volts ou 3,7 volts.Coloque o voltímetro perto da bateria. Use os dois cabos do voltímetro para conectarem o terminal positivo e o negativo da célula da bateria. Os cabos são coloridos em vermelho e preto, indicando a parte positiva e negativa. Os terminais da bateria são rotulados claramente com as marcas + e -.Leia as informações da célula no voltímetro. Marque os volts de 1,2 ou 3,7, dependendo do tipo de células. Se marcar menos que 1 volt para a célula de 1,2 ou menos que 3,4 volts para uma célula de 3,7, a célula está descarregada e precisa de ser substituída.Repita o processo em todas células da bateria. Marque as células ruins com um marcador para você saber as que devem ser substituídas.pilhas novas.

faça voce mesmo pacote de lipo polimero leve e duravel

Faça você mesmo um pacote de polímero de lítio (LiPo) e obtenha uma bateria leve, durável e poderosa que é ótima para modelos de controle remoto (CR). Uma célula de LiPo produz 3,6 V, o que é três vezes mais do que uma célula de bateria de níquel. Por exemplo, se você tem um CR que opera usando 10 ou 11 V, ele precisa de nova células de níquel para funcionar, ou você poderia fazer uma bateria de LiPo e usar apenas três células. Você terá um modelo de controle remoto mais leve, mais rápido e durável, o que é particularmente útil se for um entusiasta do aeromodelismo.Verifique a voltagem que os seus eletrônicos precisam para funcionar. Ache-a nos selos que vêm com eles. Você está trabalhando com uma fiação em séries, então divida-a por 3,6 para achar o número de baterias LiPo necessário para fazer seu pacote. Se o resultado não for um valor inteiro, então arredonde ao número inteiro mais próximo. Por exemplo, se o seu dispositivo opera em 12 V, 12 dividido por 3,6 é igual 3,3, então arredonde para Alinhar em uma mesa as baterias que você usará para fazer o seu pacote,Classifique-as numericamente usando uma caneta; então se você tiver três LiPos, etiquete-as de um a três. Enrole fita isolante em volta delas algumas vezes para segurá-las firmemente.Corte tiras de fio usando uma faca. Você precisará cortar duas tiras no tamanho da distância entre o pacote e o terminal do seu eletrônico, então meça-as usando uma régua. As outras tiras apenas precisam ter apenas 7 cm de comprimento; o bastante para ir da bateria aos terminais. A quantidade de tiras depende de quantas baterias você estiver usando no seu pacote. O número é sempre uma a menos do que o de baterias. Por exemplo, se estiver usando três unidades, precisa de duas tiras curtas, mas se estiver usando cinco, precisa de quatro.Remova cerca de 6 mm da ponta de cada tira usando o descascador de fio. Você precisa ver a parte metálica de dentro que se conecta aos terminais das baterias.Use uma tira de 2 cm de fita e grude uma ponta de um dos fios longos ao terminal positivo da bateria que você escreveu "1". O lado positivo é o "+". A outra ponta do fio conecta-se ao seu dispositivo eletrônico.Prenda uma pequena tira de fio ao terminal negativo da bateria LiPo identificada como "1" usando a fita para prendê-la. Os terminais negativos são os de sinal "-". Prenda a ponta oposta ao terminal positivo da bateria LiPo que você marcou como "2" usando a fita.Continue a anexar as tiras curtas de fio nos terminais da bateria em sequência negativa e positiva, de acordo com o número de baterias que estiver usando. A ponta do último fio curto conecta-se aos terminais positivos da última bateria LiPo numerada no pacote.Prenda uma ponta do fio longo restante no terminal negativo da última bateria LiPo que você numerou. A extremidade oposta se conecta ao seu dispositivo.Enrole fita por toda a bateria para que todos os terminais estejam cobertos. Certifique-se de que os dois fios longos estejam estendidos já que você precisa conectá-los ao seu aparelho eletrônico.

a verdade sobre as Baterias de Lítio

A minha proposta em escrever esse artigo é para tentar acabar com os mitos e "achismos" que existem em torno das baterias de Lítio, principalmente LiPos e LiFe. Na convivência com diversos modelistas, acabamos ouvindo todo tipo de histórias bizarras, conselhos, recomendações, etc, mas fica difícil filtrar o que realmente é intrínseco às baterias e o que é mito e/ou mau uso. Portanto vou tentar descrever um pouco o funcionamento das baterias e embasar tecnicamente as recomendações sobre como cuidar das suas baterias de Lítio. Caso você não esteja interessado em detalhes técnicos sobre como funcionam, pulem o item abaixo.As baterias são compostas, normalmente, por três elementos básicos. O eletrodo positivo (chamado Catodo), o eletrodo negativo (chamado Anodo) e o eletrólito, que é um material (líquido ou sólido) que interliga os dois eletrodos. Podemos então concluir que as baterias são como um sanduíche, formado por dois eletrodos e um eletrólito. Falando especificamente de baterias de Lítio, o anodo é formado por um material a base de Carbono, geralmente grafite e o Catodo é o material a base de Lítio, geralmente Lítio-Dióxido de Manganês ou Lítio-Dióxido de Cobalto (este último não é mais usado por ser tóxico); por fim, o eletrólito - que é o meio semi condutivo entre os dois eletrodos - é baseado num solvente orgânico de Lítio. Apenas relembrando um pouco dos conceitos de eletricidade e química aprendidos no colegial: uma bateria funciona fazendo circular elétrons (cargas negativas) pelo circuito externo (um motor, por exemplo) e circulando os cátions (cargas positivas) pelo eletrólito, de um eletrodo para o outro. Na figura ao lado podemos ver uma representação simplificada de uma bateria de Lítio. Os dois eletrodos são como prateleiras, onde são armazenados os cátions de Lítio (Li+). Ao se carregar a bateria, introduzimos na prateleira negativa muitos elétrons - forçados pelo carregador a entrar na bateria. Esses elétrons, que são cargas negativas, atraem os íons de Lítio do pólo positivo para o negativo, afinal, como já aprendemos também no colégio, as cargas positivas e negativas se atraem. Portanto, ao final da carga, temos um eletrodo negativo completamente cheio de elétrons e cátions (íons de Lítio, cargas positivas) e um eletrodo positivo totalmente vazio. O lítio que lá constava migrou para o negativo, se separando do seu dióxido (CoO2- ou Mn2O4-), que fica com carga negativa. Aqui podemos perceber o importante papel do eletrólito. Ele é uma substância que permite a livre circulação de cátions, mas não de elétrons; ou seja, ao encher o eletrodo negativo de elétrons, estes não podem migrar para o pólo positivo - ficam literalmente presos no negativo. Por conta disso que os cátions, que circulam livremente no eletrólito, migram para o pólo negativo, atraídos pelos elétrons lá armazenados. Apenas para constar, a carga termina quando enchemos totalmente as "prateleiras" do eletrodo negativo com elétrons e cátions e o pólo positivo fica vazio de elétrons. Durante a descarga, o processo inverso ocorre. Os elétrons migram do pólo negativo para o pólo positivo através do circuito externo, enquanto os cátions também migram através do eletrólito para o pólo positivo, equilibrando assim as cargas na bateria, estado ao qual chamamos "descarregada". Tudo isso parece bem complicado, mas vai ficar mais simples daqui pra frente. Então para resumir, vimos que a bateria é composta de um eletrodo negativo feito de grafite, um positivo feito de algum dióxido e um eletrólito que só conduz cátions. Durante a carga enchemos o eletrodo negativo de elétrons e cátions e na descarga ambos migram para o eletrodo positivo, os elétrons através do circuito externo e os cátions através do eletrólito. 2. Conceitos Básicos. Vamos a algumas definições básicas sobre as baterias de Lítio, para ajudar na compreensão do assunto; Capacidade, em "mAh": De forma simplificada, esse termo define a quantidade de energia armazenada na bateria. Uma bateria de 4000mAh é capaz de armazenar o dobro de energia de uma de 2000mAh. Se compararmos a bateria a um tanque de água, a capacidade dela seria o tamanho do tanque, ou seja, a quantidade de água que ele consegue armazenar. Esse valor geralmente é especificado com a célula carregada a 4.2V e descarregada a 3V. Assim, uma bateria de 2000mAh carregada até 4.2V irá fornecer 2000mAh quando descarregada até 3V. Taxa de carga e descarga, em "C": Aqui está um termo que gera confusão, pois a unidade utilizada (C) não é muito conhecida. Na realidade o termo "C" significa apenas a capacidade de corrente nominal da bateria, em amperes. Uma bateria de 2000mAh tem um C igual a 2A (2000mA). Outra de 4000mAh, tem um C igual a 4A (4000mA). Sendo assim, o fabricante sempre especifica as taxas de carga e descarga relativas ao C da bateria. Quando ele diz que uma bateria de 2000mAh aguenta até 30C de descarga, ele está querendo dizer que você pode drenar, com segurança, até 60A dela (30 x 2A). Caso a bateria seja de 4000mAh e 30C, você pode drenar até 120A contínuos (30 x 4A). O mesmo vale para a carga. Se a bateria suporta cargas de 5C e tem capacidade de 2000mAh, você pode carregá-la com até 10A. Caso sua capacidade seja de 4000mAh, a corrente limite de carga sobre para 20A (5 x 4A). Fazendo novamente um paralelo com o tanque de água, a taxa de descarga seria o diâmetro do cano de saída do tanque. Quanto maior o diâmetro do cano, maior o fluxo de água você consegue puxar do tanque. Número de Células em série, em "S": Mais simples, esse termo especifica quantas células em série temos na bateria. Uma bateria de 3S tem 3 células em série. Portanto, sua tensão carregada será de 3 x 4.2V = 12.6V e poderá ser descarregada até 3 x 3V = 9V. 3. Diferenças entre baterias boas e ruins. Primeiro que nem sempre as baterias boas são caras. Já vi baterias boas e baratas e baterias ruins e caras. Existem poucas fábricas de células no mundo. Não sei quantas ao certo, mas creio que dá pra contar nos dedos de uma mão e se bobear, sobra dedos. A diferença está basicamente na pureza do Lítio usado e no controle de qualidade do processo. A mesma fábrica produz desde células de altíssima qualidade (vamos chamar de nível 10) até células de péssima qualidade (nível 0) e claro, todos os níveis intermediários, de 1 a 9. Quando uma "montadora de baterias" compra as células, ela especifica o nível mínimo de qualidade exigido. Por exemplo, a Thunder Power é uma empresa que monta baterias de altíssima qualidade, reconhecida no mercado mundial. Até onde sei, é a única que dá 2 anos de garantia na bateria. Eles só compram células Top Grade (nível 10), que usam Lítio de altíssima pureza e um rigoroso controle de qualidade. Claro que essas células são mais caras. Já outras empresas chinesas só compram os lotes mais baratos, por isso a bateria não tem as qualidades técnicas das de nível 10. O curioso é que algumas empresas compram lotes sortidos! Por exemplo, ela compra por um preço fixo qualquer lote que esteja entre os níveis 3 e 8; por isso algumas baterias dessa empresa são boas (nível 8) e outras, de mesmo preço e mesma etiqueta, são péssimas (nível 3); neste caso vai da sua sorte quando você compra. Outro fator marcante em baterias de boa qualidade é o "casamento" das células em uma bateria. Devido ao processo de fabricação, é praticamente impossível que todas as baterias do mesmo lote tenham exatamente as mesmas características, como capacidade e descarga. Por exemplo, numa bateria de 5000mAh, podemos ter células com 4950mAh, 4980mAh, 5020mAh e por ai vai, todas juntas. Os fabricantes mais rigorosos testam todas as células e colocam as mais parecidas no mesmo pack, de forma a ter a melhor homogeneidade possível. Um dos indícios que o fabricante não se preocupou em casar as células do mesmo pack é quando apenas uma ou duas células enfraquecem, enquanto as outras estão boas. Essas células provavelmente eram as menores do pack e portanto foram mais exigidas que as outras. Isso fica aparente quando pack começa a demorar muito para carregar devido a um longo processo de balanceamento. 4. Resistência Interna: O que é isso? Esse parâmetro é um dos melhores indicadores da qualidade de uma LiPo e de sua saúde. E é ele que determina a capacidade de carga e descarga de uma bateria. Quanto menor, maior essas capacidades. Vamos explicar. A Resistência Interna é determinada pela velocidade com que as reações químicas ocorrem dentro da célula. Basicamente, é a velocidade com que os íons de Lítio conseguem se desprender de um dos pólos, "nadar" pelo eletrólito e entrar no outro pólo. Quando esse processo ocorre com rapidez e facilidade, muita corrente consegue fluir pela bateria e pouca será a queda de tensão e o aquecimento. Já numa bateria com menor capacidade de descarga, esse processo é mais lento e difícil, por isso a bateria não consegue fornecer muita corrente sem aquecer e apresentar uma notável queda de tensão. Vale citar que a Resistência Interna é um parâmetro que varia bastante com a temperatura da bateria. Quanto mais fria, maior a RI, já que as reações químicas ficam naturalmente mais lentas no frio. Sendo assim, o aquecimento da bateria melhora seu desempenho, mas claro, existe um limite onde o calor passa a ser danoso - veremos isso mais pra frente. Adota-se como convenção medir a RI da bateria com esta em repouso a pelo menos uma hora a uma temperatura de 22ºC Para se ter uma ideia, vamos tomar como exemplo uma LiPo 6S 5000mAh. Veja abaixo a RI esperada (média por célula) para cada taxa de descarga: - 25C: 1.9 mOhms - 30C: 1.3 mOhms - 40C: 0.7 mOhms - 60C: 0.4 mOhms Esses são valores teóricos esperados para a citada bateria. Porém. a menor RI que já vi até hoje foi 0.8 mOhms numa célula de uma 6S 5000mAh etiquetada pelo fabricante como 60C - ou seja, muito diferente do esperado teórico. Isso nos leva a concluir que o fabricante, digamos, "superestimou" sua bateria! Atualmente estou usando duas GensAce 6S 25C 3300mAh no meu heli classe 600. Segundo os cálculos, a RI esperada para cada célula dessa bateria seria de 2.91 mOhms. Na prática, eu meço, em média, 1.8mOhms na primeira carga, ou seja, com a bateria fria - em torno dos 22ºC recomendados. Caso queira fazer os cálculos para sua bateria, use a ferramenta deste site: http://www.jj604.com/LiPoTool/ Lá você pode calcular a taxa de descarga real baseada na medição da RI de sua bateria ou o inverso, calcular a RI esperada para uma determinada taxa de descarga. A RI também é um indício da saúde das células, mas para isso você precisa comparar com o RI da bateria quando nova. É natural a RI aumentar com o uso da bateria. Mas quando esse aumento acontece muito bruscamente e/ou uma das células está apresentando um IR muito maior que as outras, é um bom indício que a bateria está no final de sua vida útil. Alguns carregadores conseguem medir a resistência interna de cada célula. Os que conheço são os iChargers (e suas cópias) e os carregadores da Revolectrix. Ao lado vemos um gráfico gerado pelo Revolectrix Powerlab 8 durante uma carga. Primeiro podemos notar que a RI se estabiliza conforme a carga vai chegando ao final. E é esse ultimo valor que devemos considerar. E nessa medição percebe-se claramente que a célula #3 já está apresentando problemas. Essa é uma bateria que aposentei devido a problemas nessa célula. 5. Inimigos das Baterias de Lítio e cuidados básicos. Agora que entendemos o funcionamento básico de nossas LiPos, vamos entender como destruí-las. Sim, porque é isso que fazemos "sem querer" quando não tomamos cuidados básicos. Vou tentar relacionar os maiores inimigos das LiPos e os respectivos cuidados necessários Calor: O grande vilão. O calor é uma faca de dois gumes. Um pouco ajuda, muito destrói. Como vimos acima, um pouco de calor ajuda para que as reações químicas dentro da bateria se processem mais rapidamente, causando uma queda da IR e consequente aumento do desempenho da bateria. Um aumento maior na temperatura reações químicas indesejadas no eletrólito, com sua consequente perda e danos para a bateria. Um típico indício de sobreaquecimento é o estufamento da bateria. O mesmo vale para a carga. O primeiro indício que a corrente de carga está muito alta é o aquecimento da bateria. Isso provoca um aumento súbito da tensão pois os íons de lítio não estão tendo tempo suficiente para se acomodarem no eletrodo negativo. E isso, obviamente, leva à destruição da bateria. Como regra geral, a bateria não deve passar de 40ºC, no máximo 50ºC. Uma boa bateria, mesmo se muito exigida durante o voo, geralmente não passa de 35ºC a uma temperatura ambiente de 25ºC. Portanto, verifique a temperatura da bateria assim que terminar o voo e acompanhe sua carga para ver se a corrente de carga não está provocando aquecimento. Sobrecarga: Como diminuir a vida útil de sua bateria. Existe um consenso de que as baterias de Lítio devem ser carregadas até 4.2V por célula. Mas esse número não é um valor exato e determinado. Ele está mais para uma boa relação custo benefício. Ou melhor, uma relação entre capacidade e durabilidade. A questão é a seguinte. Quanto maior a tensão de carga da bateria, mais energia ela terá e menor será a sua vida útil. E essa relação fica muito crítica próximo dos 4.2V. Digamos que o normal de uma bateria seja durar 200 ciclos sendo carregada até 4.2V. Se você carregar até 4.3V, você aumenta sua capacidade em uns 10% e diminui sua vida útil para 50 ciclos (e olha lá). O inverso é verdadeiro. Se você carregar até 4.1V, você perde 10% de capacidade e aumenta a vida útil para 800 ciclos. Eu citei esses dois exemplo para vermos a importância que 0.1V faz na vida da bateria. Portanto, tome cuidado com o carregador que você usa. Aqueles carregadores mais baratos usam eletrônica mais barata e consequentemente menos precisa. Às vezes ao invés dele carregar suas baterias até 4.2V, ele está carregando até 4.24V, o que diminuirá consideravelmente sua vida. E SEMPRE, eu digo SEMPRE use cabo balanceador conectado à bateria. Você pode até configurar seu carregador para não balancear a bateria e diminuir o tempo de carga, mas é necessário o cabo para ele poder verificar a tensão de cada célula individualmente e evitar uma sobrecarga. Sobre-descarga: Tão nociva quanto a sobrecarga, a sobre-descarga ocorre quando a tensão da célula cai demais, geralmente abaixo de 3V. Mas ao contrário do que muitos pensam, não use o limite de 3V como limite de descarga. A tensão da célula despenca rapidamente após os 3.7V; às vezes um pouco mais que você exige do motor faz a tensão cair de 3.7V pra 3V em segundos. Sendo assim, tome muito cuidado com seu tempo de voo. Nos primeiros voos com uma bateria, voe menos tempo e sempre meça a tensão. Evite descer com menos de 3.75V. Se possível, também ajuste o Cut-Off do seu ESC para 3.5V ou 3.6V. Acredite, voar 30 segundos a menos pode fazer sua bateria durar muitos meses mais. Armazenagem: dormindo com o inimigo. Este é um dos pontos que os modelistas mais negligenciam. As baterias de Lítio se degradam muito rapidamente quando as células estão acima de 4V. É um processo parecido com o que acontece na sobrecarga, mas de forma mais lenta. E isso é tão crítico que muitos fabricantes recomendam carregar a bateria logo antes do uso. Muitos modelistas perguntam qual o tempo máximo que se pode deixar a bateria totalmente carregada antes do uso; mas a resposta é curiosa. Não é que a bateria pode ficar somente 4h carregada que a partir daí ela começa a ter problemas. Mas sim, cada segundo que a bateria passa carregada, ela está envelhecendo mais rapidamente. Então quanto menos tempo ela passar acima de 4V, melhor. Vejo muita gente carregando a bateria e desistindo de voar. Então ele deixa a bateria carregada para voar somente na semana que vem. Esses dias que ela passa carregada, são dias que ela está se degradando desnecessariamente. Portanto, se possível, carregue a bateria logo antes de voo e mais importante, quando não for mais usá-la no dia, use a função Storage do seu carregador. O ideal é a bateria ser armazenada entre 3.75 e 4V. A função Storage dos carregadores coloca as baterias geralmente na faixa dos 3.85V. 6. Boas Práticas: Dimensionando corretamente a taxa de descarga Como explicado anteriormente, esse parâmetro diz a corrente de descarga máxima que a bateria é capaz de fornecer. Pra começar, esqueça o conceito de Contínuo e Máximo (ou Pico). O que importa é o Contínuo, o resto é marketing. Se a bateria é vendida como 45C/65C (Contínuo/Pico), esqueça o 65C, isso é propaganda enganosa; o que importa é o 45C. Dimensione sempre a bateria de acordo com seu motor e ESC. Se eles são para 120A, você deve comprar uma bateria que atenda esse requisito. Por exemplo, uma bateria 5000mAh precisa ter pelo menos 25C para atender. Agora enfrentamos outro problema. A maioria dos fabricantes de baterias não é muito honesta nessa especificação. Pegue uma bateria chinesa "garantida" para 65C e drene essa corrente dela; a tensão vai despencar vergonhosamente - ou seja, a etiqueta aceita qualquer número que o fabricante quiser imprimir, o problema é o produto atender aquela "especificação". Portanto, desconfie de produtos "miraculosos". Se você está trabalhando com uma marca confiável de bateria, não caia na ilusão do "quanto maior, melhor". De fato, quanto maior a taxa de descarga, melhor seria; se isso não trouxesse junto mais peso pro aeromodelo e principalmente para o seu bolso. Se você calculou que 25C é suficiente para sua aplicação e quer ter uma margem de segurança, então compre uma bateria de 35C; não precisa comprar uma de 65C achando que seu aeromodelo vai ter mais potência; pelo contrário, você vai gastar o dobro e vai levar mais peso pra voar. Amaciamento Toda bateria de Lítio tem uma característica chamada "Taxa de Auto Descarga"; ou seja, a bateria vai perdendo sua carga com o tempo de inatividade. Essa taxa fica em torno de 5% ao mês, variando um pouco com a qualidade da bateria. Ou seja, se você deixar a bateria parada no armário, ela perderá 5% de sua carga por mês. Sendo assim, durante a fabricação, ela é impregnada com uma substância química que diminui muito essa taxa de auto descarga, para aumentar a vida de prateleira - nome que os fabricantes dão para o tempo que a bateria fica à venda, esperando ser comprada. O problema é que essa química naturalmente aumenta a Resistência Interna dela, diminuindo consideravelmente a taxa de carga e descarga, como vimos no tópico sobre R.I. É por isso que os fabricantes pedem para o modelista "pegar leve" nos primeiros ciclos, tanto na carga quanto na descarga, já que a RI estará maior. Durante esses primeiros ciclos, essa química será literalmente queimada, liberando todo o potencial da bateria. Portanto, pegue leve nos primeiros 5 ciclos da bateria. Faça carga com metade da especificação e não abuse nas manobras durante o voo, para evitar picos de corrente. Depois dos primeiros 5 ciclos, pode aproveitar todo o potencial de sua bateria. Menor tensão de carga Como também já vimos acima, a vida útil da bateria é muito afetada pela sua tensão de carga. Caso você não se incomode em perder alguns segundos de voo para aumentar a vida da bateria em muitos meses, configure seu carregador, se possível, para carregar a bateria a um valor menor que 4.2V por célula. Eu particularmente prefiro carregar minhas baterias até 4.1V para que elas durem muito mais - e tem funcionado. Com 4.1V você tem cerca de 10% a menos de carga, mas prolonga muito a vida dela. Use um bom carregador Aqui está outro detalhe que vai te ajudar a preservar seu investimento em baterias. Como foi dito acima, carregadores baratos não têm precisão suficiente para manter os níveis de tensão dentro dos limites exigidos pelas LiPos; e isso causa uma deterioração prematura delas. Existem algumas marcas de carregadores bem conceituadas no mercado, como Bantam, Thunder Power e Revolectrix. Se você puder, compre um carregador dessas marcas. Um marca que eu gostava, mas que ultimamente vem apresentando muitos problemas, é a Hyperion. Eu mesmo perdi duas baterias por conta de falhas nos cabos de balanceamento de um 720 SDuo que tive; sem contar os alarmes de erro que ele apresenta no final das cargas. Outra marca bem comum no mercado é a Junsi, que fabrica os iChargers e seus clones, como os Voltz. São carregadores medianos, com uma boa precisão eletrônica e potência, mas de certa forma frágeis e com poucos recursos. Eu já tive um iCharger 208B e ele queimou ao descarregar uma bateria. Abri pra verificar e não gostei muito do que vi. Foi trocado em garantia e coloquei o novo à venda assim que chegou. O 3010 segue a mesma linha; ele me parece muito "delicado" para um carregador que precisa lidar com 1000W. 7. Mitos: Tenho que esperar a bateria esfriar antes de carregar? A resposta é Não, desde que a bateria esteja dentro dos limites aceitáveis. Se ela está esquentando muito durante o voo (acima de 40ºC), algo está errado; talvez sua descarga esteja subdimensionada para seu aeromodelo. Mas a bateria descendo dentro da temperatura normal (<40ºC) pode colocá-la no carregador e mandar brasa. Não existe embasamento técnico nenhum que justifique não carregar uma bateria enquanto morna. Cargas rápidas ou muitos packs? Bom, aqui está algo que vai do gosto pessoal. Eu particularmente prefiro ter apenas um pack no meu heli e fazer carga rápida antes de voar. Eu demoro de 8 a 9 minutos para carregar duas baterias de 6S 3300mAh e então estão prontas para voar. Sem ter que ficar me preocupando em por e tirar do heli, em carregar em casa antes de voar, etc. Para isso você precisa ter um bom conjunto de bateria, carregador e fonte. Já outros preferem carregar várias baterias em casa e levar pra pista. Eu não gosto muito dessa abordagem, pois você precisa ter muitas baterias. O preço que você gasta em 5 jogos de baterias você compra um bom carregador; e depois é só lucro, pois as baterias acabam, mas um bom carregador, não. Enfim, vai do gosto do freguês. É bom guardar a Bateria na geladeira/freezer? Eu tenho curiosidade de saber onde surgiu esse mito. Na realidade, tanto as altas temperaturas quanto as baixas fazem mal para as baterias. O ideal é que elas sejam guardadas entre 20ºC e 30ºC. Caso você precise armazenar a bateria em baixas temperaturas, jamais deixe-as totalmente carregadas. Quando mais frio, mais prejudicial isso se torna. E antes de utilizá-las, tente aquece-las a pelo menos 10ºC. Jamais coloque uma bateria a 0ºC no seu aeromodelo e exija o máximo dela. Como foi dito no tópico sobre resistência interna, um pouco de calor ajuda a acelerar as reações químicas. Portanto, nada de guardar bateria em freezer/geladeira. Deixa-as guardadas em um lugar seguro, seco e em temperatura ambiente; nada de calor ou frio extremo. 8. Dúvidas Frequentes: Por que minhas baterias estufam? Infelizmente existem diversas respostas para essa pergunta. Vou tentar relacionar pela ordem de importância: Correntes de descarga e/ou carga fora dos limites: Você está drenando e/ou carregando com uma corrente maior do que sua bateria pode fornecer. Como foi explicado acima, nem sempre a especificação do fabricante é confiável - isso é bem comum nas baterias de marcas menos confiáveis. Ao fazer circular uma corrente maior do que a bateria pode suportar, ela aquece, o que causa estufamento. Portanto, se suas baterias estão estufando, pegue o hábito de medir a temperatura das mesmas logo após o voo. Se estiver passando de 40ºC, algo está errado. Compre uma bateria com uma taxa de descarga maior ou de uma marca mais confiável. Imprecisões na medição de tensão das células durante a carga: usar um bom carregador é fundamental para uma longa vida das baterias - e obviamente fazer TODAS as cargas com o cabo de balanceamento conectado. Quando o carregador falha em monitorar corretamente as células, elas podem atingir uma tensão acima de 4.2V, o que é extremamente prejudicial a mesma, causando uma degradação prematura e inevitável inchaço da célula. Descarregar demais a bateria: quando uma célula atinge uma tensão abaixo de 3V - situação muito comum quando se usa a bateria por mais tempo que deveria - reações químicas começam a degradar a bateria o que pode prejudicar muito a vida útil da mesma. Portanto, JAMAIS deixa sua bateria de Lítio baixar de 3V célula; sempre controle o tempo de uso para isso não ocorrer. JAMAIS voe até seu ESC cortar o motor (Cut-Off). Geralmente uma ou duas ocorrências dessa podem fazer a bateria estufar. O ideal é as células estarem acima de 3.75V por célula ao final do uso e não entrar mais de 80% da capacidade da bateria na recarga (por exemplo, em uma bateria de 5000mAh, não podem entrar mais de 4000mAh na regarga). Armazenar as baterias carregadas: Você jamais deve armazenar uma célula com tensão acima de 4V. Como foi dito anteriormente, essa situação deve ser evitada o máximo possível. Quanto mais tempo a célula ficar com tensão acima de 4V, mais danos ela sofrerá. Portanto, SEMPRE armazene a bateria com uma tensão entre 3.75 e 4V. Para isso, use a função Storage do seu carregador. Por que minhas cargas demoram tanto pra balancear? Esse é um dos primeiros indícios que sua bateria está virando um mero peso de papel. Isso ocorre porque uma ou mais células já não estão armazenando a mesma quantidade de carga das outras células. Isso faz com que o balanceador leve muito tempo tentando equilibrar as células. Infelizmente a maioria dos carregadores no mercado tem baixa capacidade de balanceamento, em geral 500mA ou menos. E pior, geralmente o carregador só começa a balancear quando a bateria está praticamente carregada, o que torna o processo ainda mais demorado. Minha bateria está virando um peso de Papel. Existe alguma maneira de recuperá-la? Infelizmente a resposta é não. Quando uma ou mais células começam a enfraquecer e apresentar problemas como menor capacidade de carga, o problema é irreversível. Já cansei de ouvir fórmulas mágicas de como recuperar uma LiPo, tentar clicar a bateria algumas vezes, mas tudo isso é lenda urbana. Uma vez que a química da bateria se degrada, o processo é irreversível. Por isso, cuide da sua bateria. Com os cuidados citados nesse artigo sua LiPo irá durar muito mais tempo.

sábado, 29 de novembro de 2014

o biplano e seu escalonamento

Para que já sabe: é bom recordar – para quem não sabe: é bom conhecer O Biplano é uma aeronave com duas superfícies de sustentação (asas) verticais e paralelas (uma sobre a outra). Foi uma configuração muito usada na década de 1940, mas caiu em desuso gradativamente por apresentar grande arrastro aerodinâmico, impedindo que o avião alcancace velocidades mais altas, mesmo com motores potentes, apresentando baixa eficiência. Atualmente, existem modelos modernos de biplanos com finalidades acrobáticas. O biplano possui grande manobrabilidade por possuir asas mais curtas e, portanto, menor momento angular no sentido longitudinal. Escalonamento: É o modo como as asas biplanas e triplanas são montadas em relação a fuselagem: • Sem escalonamento: As asas são montadas uma acima da outra sem diferença de posição. • Escalonamento ascendente: As asas são montadas com diferença em relação ao comprimento da fuselagem sendo a superior ligeiramente à frente em relação à vertical da de baixo. Como em uma escada quando se está subindo. • Escalonamento descendente: Ao contrário do tipo ascendente estas são montadas com a asa superior afastando-se para trás do comprimento da fuselagem. Como em uma escada quando se está descendo. Tipos de layout: É o modo das asas em relação uma da outra: • Biplano comum: As asas tanto a de cima quanto a de baixo são iguais sem diferenciação de posição e tamanho. • Asas desiguais: Geralmente a asa de baixo são de comprimento menor que a de cima unidas por montantes. • Sesquiplano: É um tipo de biplano que tem a asa inferior muito menor que a superior e não possue montantes. • Sesquiplano invertido: Contrária ao tipo anterior, a asa superior é muito menor em relação a inferior.

O futuro do FPV HD

Estamos em 2014, era das enormes telas HD e mais recentemente Ultra HD, ou 4K como também são chamadas. Tu entra numa loja de shopping e fica maravilhado com as imagens em alta definição exibidas por todos os lados, chega a dar água na boca. Mas por diversos motivos o FPV ainda está restrito a links de baixa resolução e câmeras de vigilância. Óculos mais modernos como os Fatshark Dominator HD - que nem são de fato HD - custam uma fortuna e mesmo que fossem HD seriam inúteis para qualquer um que não pudesse gastar outra fortuna em um link digital como o DJI Lightbridge. Alguns vão dizer que esperam ansiosos por tecnologias como o Oculus Rift, que aí sim teremos de fato imagens em HD, mas e se não precisassemos pagar novamente por coisas que já temos como telas de altíssima resolução e sensores como acelerômetros e bússolas? Claro, sempre vai ter gente que prefere pagar pelo melhor ou por uma marca, mas e se isso fosse apenas opcional e não obrigatório? Esses tempos vi na Hobbiking este sistema de vídeo óculos de baixo custo, que na verdade já é usado ha anos por muitos praticantes de fpv por ser mais confortável do que as duas pequenas telas dos óculos tradicionais, que muitas vezes deixam o cara meio vesgo para conseguir usar.O que chamou a atenção foi a baixa resolução da tela de 480x320 e a facilidade com que os usuários resolviam o problema simplesmente encomendando uma tela melhor na Deal Extreme por menos de 30 dolares. Daí para lembrar do Goggle Cardboard, com o qual a empresa presenteou os presentes no Google I/O e basicamente é um case de papelão com uma lente que com ajuda de um smartphone e um aplicativo se transforma em um headset completo, foi um pulo.Mas como ninguém pensou nisso antes? Claro que pensou, se chama Durovis Dive, que faz justamente isso, mas com um acabamento bem mais interessante. Ele pode inclusive ser impresso em casa com uma impressora 3D, o que facilita ainda mais as coisas.E não é só ele. Via Kickstrarter acaba de ser financiado o vrAse, que segue o mesmo princípio e inclusive vem com adaptador universal para smartphones de 3,5 a 6,3". A questão aí se torna um pouco mais realista e já me pergunto se seria possível enganar ele e instalar uma simples telinha de 800x600 no lugar do celular, para ser usado com nossos downlinks atuais.A questão é que caso a tecnologia de links HD evolua para o lado do wi-fi, o uso dos smartphones que já temos ao invés de equipamentos caros e sofisticados será sim uma opção alternativa e elegante.

Pesquisar este blog

Carregando...

HISTORIA DO AEROMODELISMO

História do aeromodelismo no Brasil O aeromodelismo surge no Brasil no fim da Década de 30 Logo a imprensa e curiosos começam a chamá-lo de esporte-ciência Pois naquela época a tecnologia era bastante primaria e não existia o radio controle Os modelos eram todos de vôo livre e o grande desafio era manter o modelo o maior Tempo possível em vôo Havia os Planadores, os modelos a elástico e os com motores a explosão a gasolina, com um sistema obsoleto que utilizava uma bobina de alta tensão, pilhas para o sistema de ignição e velas automotivas. Modelos com motores a elástico eram os mais visados e baratos por isso tinham mais adeptos, pois com o começo da 2° guerra mundial em setembro de 1939 os motores a explosão sumiram de vez após os EUA entrarem no conflito, havia varias categorias de modelos a elástico, sendo a mais famosa a wakefield. Nessa época no Brasil o Jornal A GAZETA instituiu um troféu para os modelos de 1,000 cm ²de área alar que ficassem mais tempo no ar que foi disputado por vários anos Com algumas provas tendo mais de 50 inscritos Os modelos com motor a explosão eram divididos em categorias distintas e por classe Tínhamos a classe “A” para modelos com motores até 0,19 pol ³ “B” para modelos com motores até 0,20 a 0,29 pol ³ “C” para modelos com mais de 0,30 pol ³ O tempo de funcionamento dos motores era limitado a 20 segundos e era controlado por um timer Pouco se sabe do aeromodelismo em outros países nessa data e a única revista dessa época era a model airplane news que foi a pioneira e existe até hoje No Brasil, durante a guerra as disputas e provas eram realizadas com grande freqüência E eram muito prestigiadas pelo ministério da aeronáutica Não havia aeromodelistas profissionais e nem mecânicos e montadores Todos os participantes ajustavam e construíam seus modelos Todos praticavam o esporte pelo esporte. Depois do Término da guerra começaram a aparecer os primeiros rádios que eram de um só canal, na grande maioria das vezes montados pelo próprio entusiasta, como o radio tinha um sói canal, só se comandava o leme e para descer o leme era acionado fazendo assim o modelo perder altitude e vir em espiral até o chão Começaram a aparecer então dispositivos que permitiam 2 velocidades no motor Uma acelerada e outra afogada comandadas por um só canal com uma catraca movida a elástico Ray Arden nesta época já havia inventado a vela glow plug ( vela de filamento incandescente ) e os motores gigantescos e desengonçados com suas bobinas , condensadores , e baterias de vôo desapareceram do mapa , a gasolina foi substituída pela mistura metanol e rícino , que era feita pelos próprios modelistas , nas proporções indicadas . Na Década de 60 finalmente começaram a aparecer os rádios multicanais que eram Comandados pela ressonância de pequenas laminas de metal que ao vibrarem a certo tom emitido pelo radio tx ou transmissor fechavam o circuito para um determinado comando, para dar leme para direita, uma ressonância era dada e para esquerda outra, assim sendo com os demais comandos, que para ter um simples radio com 4 comandos precisavam de 8 canais de radio Os comandos eram do tipo BANG-BANG, ou seja, Tudo para um lado, no meio e tudo para o outro lado Não havia meio termo e não tinham posições intermediarias

RADIO CONTROLE

Rádio Controle Os transmissores de rádio podem ser FM ou AM, de 2, 3, 4 ou mais canais, simples, com mixagens ou computadorizados. São muitos detalhes, por isto coloquei aqui um pequeno resumo. Um bom começo é comprar um rádio simples de 4 canais, é barato e suficiente para muita diversão durante um bom tempo. Se a verba for suficiente, ou como uma evolução depois de aprender a voar e conhecer melhor o hobby, um rádio de 6 canais computadorizado com mixagem e memória é excelente. Pretendo comprar um um dia, mas sem pressa. No Brasil a faixa de freqüências homologada para controle remoto são 72Mhz (para aeromodelos) e 75Mhz (para veículos de superfície - carros ou barcos), portanto quando for adquirir um equipamento, procure comprar na faixa de 72Mhz, isto te evitará muitos problemas futuros com interferência, e acidentes, além de garantir a disponibilidade de acessórios. Modulação Existem dois tipos básicos de modulação de rádio para modelismo: AM e FM. Cada canal do rádio é enviado como um pulso de largura variável. Quando o canal está no mínimo a duração do pulso é de 1ms e quando o canal está no máximo é de 2ms. Entre cada pulso existe um intervalo de 1ms. Após o último canal é feita uma pausa, que indica para o receptor que os canais acabaram. Esta codificação é chamada de PPM. Os rádios AM utilizam uma única freqüência, que é ligada ou desligada de acordo com os pulsos. É diferente do AM utilizado para transmissão de voz, onde existem níveis intermediários, portanto rádios AM para modelismo não são tão ruins quanto radinhos de pilha comuns. Como o circuito do receptor AM é menor que os FM, o receptor fora da caixa pode ser leve o suficiente para ser utilizado em aviões elétricos, dependendo do projeto. O maior problema dos rádios AM é a compatibilidade, pois é difícil de encontrar receptores AM avulsos e principalmente microreceptores. Os rádios FM utilizam uma freqüência quando transmitem o pulso de controle e uma freqüência diferente nas pausas. São os mais comuns para aeromodelismo, portanto recomendados se você pretende comprar vários receptores para ter vários modelos ao mesmo tempo. FreqüênciaO padrão de rádios para aeromodelismo é a faixa de 72Mhz. Dentro desta faixa existem vários canais. Recomendo verificar com o pessoal de sua região quais canais já são usados e comprar um diferente. Isto não é tudo, verificar se tem alguém na freqüência antes de ligar o rádio é uma regra de segurança essencial, mas usar um canal que ninguém mais tem é uma segurança e conforto adicional. CanaisPara ter um controle preciso e ficar com os comandos no lugar correto o melhor é ter um rádio de 4 canais, ou mais. Apesar da maioria dos modelos usar apenas 3 canais, estes tipos de rádio às vezes têm os comandos em posições fora de padrão (por exemplo, profundor no stick esquerdo, que geralmente é motor). Isto deixa os controles mais confusos e menos intuitivos. Como a diferença no preço do transmissor não é tão absurdamente grande, melhor comprar um rádio que dure mais tempo. MixagensEm alguns casos dois canais do rádio precisam acionar dois comandos em conjunto. Os exemplos mais comuns exemplos destas mixagens são a cauda em V e Elevon (usada em modelos sem cauda, em que as superfícies da asa agem como aileron e elevator). Os primeiros modelos serão treinadores e geralmente não precisarão de mixagem. A maioria dos aviões escala também funcionarão com o rádio sem mixagem. Se você decidir construir um modelo que precise de mixagem e o rádio não tiver esta função a opção será comprar ou fazer um mixer separado, para usar no modelo. MemóriaRádios computadorizados (por exemplo os Futaba 6XAS e 6EXA) entre outros recursos têm memória que permite armazenar a configuração e ajustes de diversos modelos. Para quem tem vários modelos com vários receptores isto pode ser bastante útil. Como por enquanto só tenho um receptor, para trocar de modelo tenho que tirar o receptor, speed control e servos de um modelo e colocar no outro. Demora cerca de 10 minutos, então gastar 1 minuto a mais configurando o rádio não chega a ser um problema. Receptores Os receptores de rádio devem ser compatíveis com o transmissor. Os receptores AM são praticamente todos compatíveis. Para os receptores FM, basicamente existem 2 padrões, o Futaba e o JR. Para a maioria das aplicações 4 canais é o suficiente. Se você quiser usar trem retrátil ou flaps, serão necessários 6 canais. Alcance Os receptores tamanho normal geralmente têm alcance de 1500m, mas geralmente são pesados demais para modelos elétricos. Existem receptores da Berg e de outros fabricantes que têm grande alcance, pequeno peso e tamanho e boa imunidade a interferências, mas são mais caros. Para começar, um receptor da GWS é mais que o suficiente. Os microreceptores geralmente têm alcance de até 300 metros. Na linha GWS, os mais comuns são: R4P: Pico-receptor de 4 canais, pesa menos de 5 gramas e tem alcance de 150 metros. É o que eu uso. Apesar de 150 metros parecer pouco, é mais longe do que se pode enxergar o modelo, e a não ser que se pretenda voar planadores grandes ou modelos maiores que 1m é o suficiente. R6N: Nano-receptor de 6 canais, pesa cerca de 8 gramas e tem alcance de 300 metros.

trem de pouso(dicas de instalaçao)

Trem de pouso modelado com vareta de aço 2 mm e rodinhas de espuma.Distancia aproximada entre eixos: 16cmTamanho de cada haste: 7cmDiâmetro das rodas: 4cm
Dicas de posicionamento:Para os aeromodelos com bequilha, posicionar o trem aproximadamente 2cm a frente do centro de equilíbrio.Para os aeromodelos com triquilha, posicionar o trem aproximadamente 2cm atrás do centro de equilíbrio.

DICAS DE AEROMODELISMO


Dicas de Aeromodelismo
Frederico Issao Farias Kishi é membro fundador da Associação de Aeromodelistas de Petrolina, que encontra-se em fase de estruturação.
Esta associação de aeromodelistas pretende desenvolver um belo trabalho de disseminação e popularização do aeromodelismo, ajudando iniciantes no hobby e jovens sem condições monetárias a aprender os segredos de pilotagem e montagem dos modelos.
De muito boa vontade e visão, Fredkishi (como Frederico se identifica na internet) resolveu colaborar com algumas dicas de aeromodelismo, resultado de suas pesquisas de materiais e técnicas. Esta é uma iniciativa que visa ampliar os horizontes do projeto de disseminação do aeromodelismo tocado pela Associação de Aeromodelistas de Petrolina, rompemdo os limites de sua cidade sede e alcançando modelistas em todo o Brasil.
Seguem suas dicas:
Dica 01: Acabamento com epoxi rápida...
Ao usar araldite Hobby 10 minutos acrescente sempre 15% a mais de resina do que endurecedor. Priemiro que fica bem mais rigido e seguro. Segundo que para fazer o acabamento é bem mais fácil de lixar.
Dica 02: Varetas de freijó...
O emprego de varetas de freijó na extrutura de longarinas da asa e na fuselagem garante um acabamento e rigidez de primeira. Ela é leve, maleável, resistente a torções e fácil de trabalhar.
As dicas anteriores fazem parte de uma serie de testes que Fredkishi faz na construção de aeromodelos.
Dica 03: Dope Alternativo...
Compre laca( Vendida nas lojas de tintas e materiais de marcenaria) e acrescente à mesma uns 50 gramas a mais de goma laca. Misture e pronto. É excelente para tampar poros.
Em ref. ao DOPE: Usa-se este material em entelamentos e como tampa poros, podendo ser usado junto com talco ou pó de balsa, para este fim. Para o preenchimento de pequenas aberturas que não requerem esforços, pode-se misturar maizena à mistura.
Dica 04: Aprendendo a fazer seu proprio modelo...
Esta dica fala sobre proporções, distribuição de peso, vôo e impulsão de um modelo catapultado.
Talvez você necessite ter uma planta, ou pelo menos uma ideia, mas construa um modelo de balsa 1/16 para as asas e 1/8 para fuselagem (expessura da madeira), pequeno, na escala de 1:100 e mais ou menos com 20cm de envergadura. Teste-o como planador. Respeite uma distância de 1/2 da sua envergadura a distância entre o bordo de fuga da asa para o bordo de ataque do profundor. O tamanho do profundor será 1/3 da sua envergadura e 1/2 da corda da asa será sua largura. Trime-o a 1/3 do bordo de ataque da asa e coloque chubinho no bico para seu balanceamento. Acrescente no final 5% a mais para seu planeio de 45 graus.
Teste o modelo no seu quarto e acrescente mais um chubinho se for preciso.
Faça na area de CG um pequeno palito de bambu em 45 graus inverso. Este será seu lançador... Prepare seu estilingue com uma pequena madeira de 20cm de comprimento por 2cm de largura e 1 cm de espessura. Faça um furo e acrescente um elástico entrando pelo furo e passando pelo laço do elástico.
Vá pro campo de mais ou menos 40 metros de raio e veja a posição do vento. Arremesse o modelo num ângulo de 60 graus pra cima. Bons vôos!
Obs: As medidas de expessura sugeridas em frações normalmente referem-se a frações da polegada.
Dica 05: Epoxi rápida
Bom para o Araldite 24h ficar mais rápido ou seja colar em 5h acrescente um pouco mais de endurecedor 10% a mais e deixe a peça a ser colada por 1h na geladeira ou frezer o frio, o endurecedor e a umidade vai acelerar o processo.
Dica 06: Para proteger o local do tanque contra o ataque do alcool e oleo...
Basta dissolver uma parte de araldite 15 minutos com acetona, na quantidade suficiente para passar em todo local desejado e manusear por toda superficie. Passe com um pincel de sedas macia, vai ficar um espetáculo
Dica 07: Cianoacrilato lento...
acrescente um pouco de bicarbonato de sódio ao mesmo.
Dica 08: Disco de corte alternativo.
Muitos aeromodelistas usam a Dremell para construir e consertar seus modelos de plasticos ou kits. O uso de brocas e discos de cortes são frequentes. A compra destes exige o desembolso de R$ 10,00 ou mais a depender da sua utilização. Quer gastar R$ 1,00 num disco de corte de 1 polegada de diâmentro, feito de aço e com precisão de milimetro de espessura?
Vá uma loja de briquedos importados da china, estas lojas de um real. Lá, procure uns carrinhos de fricção feitos de latão. Bom, desmonte o carrinho para apenas utilizar duas engrenagens de aço que existem para acionar a fricção das rodas e helices. Ganhou dois discos de aço para sua Dremell por R$ 1,00.
Fredkishi fez testes de rigidez e registencia. No quesito segurança recomenda o uso para balsa de qualquer espessura, compensados de até 10mm, usar em dremell com o pino que é usado para os discos de corte e deve-se travar com a ferramenta recomendada que já vem na dremell. Até o momento em que me enviou a dica ele apenas precisou trocar por desgaste (ou seja, não enfrentou quebras). Deve-se obrigatoriamente usar OCULOS DE PROTEÇÃO e não cortar metal e derivados (pois o disco não é próprio para isso).
Eu acrescento que é também interessante procurar discos de corte de outras marcas que não a dremel. Em algumas lojas pode-se encontrálos a preços bem mais acessíveis, mas lemvre-se que quebram mais fácil e desgastam rapidamente. Os discos alternativos de Fredkishi podem ser uma opção muito melhor para cortes leves, pois são mais difíceis de quebrar.
Dica 09: Onde comprar discos e brocas diferentes...
Comprar discos de corte em lojas especializadas em material odontologico. Lá encontraremos brocas de tungestênio, discos de varios tamanhos, pedras de esmerilharmento de diversos granulos e a mais variadas formas de florar ideias.

CUSTOS DE MONTAGEMS

Quanto custa? Esta é uma pergunta que sempre me fazem. Para facilitar, fiz uma estimativa dos ítens necessários, que procuro manter atualizada. O que escolhi para esta lista são equipamentos padronizados, de boa qualidade, e que possam ser usados nos modelos futuros. Assim como existem vários tipos de avião, aeromodelos, elétricos ou não, também têm várias modalidades. Existem modelos acrobáticos, motoplanadores, modelos para voar em locais fechados, etc. Mas assim como um piloto de jato aprende a voar inicialmente em aviões pequenos, o primeiro aeromodelo deve ser simples, feito para aprender (que chamamos de treinador). Depois de aprender a pilotar pode-se partir para as outras modalidades bem mais facilmente,isto é, sem o risco de comprar um aeromodelo acrobático belíssimo e muito caro e destruí-lo no primeiro vôo. Para isto costumo sugerir um conjunto que, apesar de não ter o melhor desempenho possível, permite aprender a voar e a montar aeromodelos elétricos e se divertir muito. Depois que de aprender a pilotar geralmente se sente vontade para fazer ou comprar modelos melhores, baterias de duração mais longa, motores mais fortes, mas neste ponto já se tem noções suficientes para escolher o equipamento que melhor atenda ao tipo de avião que se gosta, sem entretanto desperdiçar os equipamentos do primeiro avião. A lista abaixo contém sugestões de equipamentos voltados para um modelo treinador elétrico entre pequeno e médio. Os preços são aproximados, mas servem para ter uma boa idéia do custo para iniciar no hobby. Foram calculados para um modelo para aprendizado, com envergadura entre 100cm e 120cm, com peso de 300g a 600g, comprando os ítens em lojas com boa média de preço. Devido ao aumento de preço de alguns ítens e à troca por alguns equipamentos de melhor qualidade, o total da lista subiu um pouco de valor, mas são equipamentos muito mais duráveis e de melhor qualidade, que podem ser usados em uma gama muito maior de modelo. Este conjunto é o que tenho utilizado e é adequado ao Piper Cub do tutorial, além de ArrowSonde, Buster e a outros modelos na mesma classe de peso. Nesta lista só constam equipamentos que já testei pessoalmente e que portanto posso assegurar a qualidade. Alguns ítens existem em várias lojas. Para o pessoal de SP os fretes não pesarão tanto e pode-se comprar em várias lojas, mas dependendo da distância, recomendo analisar o custo de frete, eventualmente concentrando em uma única loja para evitar gastos desnecessários com SEDEX. Planilha de custos Descrição Marca Fornecedor Preço un. Qtd. Preço total Transmissor de rádio 2,4GHz com receptor Airtronics Asas Eletricas 235,80 1 235,80 Kit Slow Stick GWS RCtech 173,00 1 173,00 Servos de 9g Emax AsasEletricasRCtech 16,00 2 32,00 Combo de motor 2822 + ESC + adaptador + hélice Emax GPwings 75,00 1 75,00 Bateria LiPo 11,1V/1300mAH Hyperion RCtechAsas Elétricas 66,00 1 66,00 Carregador de bateria iMax B6 iMax Aileron 165,00 1 165,00 TOTAL aproximado

DICAS PARA INICIANTES

Como iniciar no aeromodelismo Ainda sou um iniciante de aeromodelismo, tenho muito que aprender, mas o que descobri até agora já é o suficiente para construir meus próprios modelos e voar. Desde criança tenho vontade de ter um aeromodelo, mas sempre me desanimei achando que seria muito caro e difícil, e que qualquer erro de pilotagem terminaria em prejuízo. Um dia, navegando no site http://www.howstuffworks.com/ (recomendo acessar, ensina com bons detalhes como funcionam muitas coisas interessantes), vi na seção de "gadgets" um B2 da Megatech, todo feito de espuma e um motor speed 400. A descrição de sua resistência me animou, mas o vôo ainda parecia muito rápido. Comecei a pesquisar o assunto. Conheci o site E-vôo, e fiquei animado com os modelos de isopor e depron. Depois de muita pesquisa, optei por pilotar aeromodelos elétricos, por causa de suas vantagens: São mais leves e, portanto, mais seguros. Não existe perigo de causar danos pessoais ou a materiais; Não tem nada para limpar depois do vôo, posso deixar o avião no porta-malas do carro a semana toda e voar 1 hora na quarta-feira à noite depois do trabalho; Posso voar perto de casa ou do trabalho, não preciso procurar pistas grandes; Não tem preocupação com combustível tóxico; Modelos de isopor ou depron são rápidos para montar e suportam quedas sem grandes danos. Pesquisei algumas lojas e passei um tempão sem saber se comprava um kit RTF ou tudo separado, se rádio de 4 canais servia ou precisava de 6, se era melhor kit de isopor (mais resistente) ou balsa (mais leve). Como estava com pouquíssimo tempo por causa do trabalho e não ia conseguir ir nem ao Pacaembu, comprei um Megatech X-EC e passei a voar nos jardins do museu do Ipiranga. Foi um brinquedo legal, mas muito limitado. Continuei juntando informação e comprei um transmissor, motor, hélices, flight-pack, depron, isopor, até começar a montar aviões e pilotar. Todas as peças têm um peso, um preço, uma capacidade diferente. E tudo isto precisa ser ponderado para a experiência não terminar em frustração. Com muita ajuda dos amigos do forum do e-voo consegui passar por tudo isto e montar alguns modelos que voaram e me deixaram muito satisfeitos. Primeiro precisei não acreditar em preconceitos dos aeromodelistas Glow. Alguns lojistas tentaram me empurrar um modelo glow para aprender com um instrutor. Isto é besteira, é fácil aprender a voar um aeromodelo elétrico sozinho, treinando no simulador e com algumas dicas dos outros pilotos no dia do vôo. Basta usar um modelo lento e estável. Meu primeiro modelo foi o Frog, que acabou sofrendo por alguns erros básicos como ficar muito pesado e usar uma bateria que não dava o rendimento necessário. Voltando para casa depois do vôo do Frog, passei na frente de uma loja de pesca. Resolvi entrar e perguntar por varas baratas para tirar os gomos. O dono me mostrou alguns potes com centenas de gomos de diversos tamanhos, expessuras e materiais. Acabei comprando um gomo de fibra de carbono e um de fibra de vidro. No mesmo dia o gomo de fibra de carbono serviu de cauda, alguns restos de isopor formaram a fuselagem e o gomo de fibra de vidro foi a longarina para uma asa poliédrica de pluma 3mm e deprn 2mm, mas agora com um perfil grosso. No dia seguinte de manhã já estava pronto, desta vez com 400 gramas. Depois de lincado e acertado o CG não me contive e apesar de não ter ninguém para me ajudar no vôo inaugural, foi para a praça mais próxima, liguei o motor e lancei. Funcionou, o modelo saiu voando reto e subindo a 20 graus. Deixei ganhar altura e comecei a me aventurar com os sticks. Curva para a esquerda, perdeu altura, cabra um pouco, faz curva nivelado. Estava tudo indo bem até que acertei um poste de frente. O eixo da redução entortou um pouco, mas o resto estava bem. O teste de resistência estava feito. Nada pior que isto podia acontecer, perdi o medo. Apesar de nunca ter pilotado nada antes e de ter visto poucas vezes aeromodelos voando de perto, consegui controlar meu novo brinquedo. Fiz vários vôos, até acabar a bateria. Voltei para casa feliz, e com muita vontade de comprar bateria. Como tudo pode sempre ser melhorado, na segunda-feira comprei isopor P3 e refiz a fuselagem, mais aerodinâmica. Refiz a asa toda com depron 2mm, para deixar mais leve (economizei 50 gramas). Feliz com o ganho de peso, abusei e coloquei trem de pouso triciclo. Ficou de novo com 390 gramas, mas agora com uma bateria que ia dar mais potência. Na quarta-feira à noite fui ao Paca. Criei coragem e lancei, dei uma volta e pousei. Fiz isto várias vezes. Depois de alguns minutos, criei coragem e decolei do chão. Subiu muito bem. Me senti realizado. Se você está entrando no hobby, sugiro que veja o projeto do MiniStick na seção de Reviews. Um projeto meu (por incrível que pareça) mas que se revelou um ótimo avião treinador. Foi feito no chute e alterado várias vezes, mas agora fiz uma planta para quem quiser algo parecido. O Aerosonde é outra excelente opção, com a vantagem de ser muito resistente e não quebrar hélices e motores em pousos desastrados. Já fiz dois destes e considero meu melhor projeto. O Arrowsonde é seu sucessor, um modelo menor, mais leve e mais ágil, usando motor nacional com uma bateria mais leve. Depois que aprendi um pouco mais comecei a ajudar outros iniciantes a escolher modelos. Em alguns casos a escolha era difícil, porque quem mora longe dos grandes centros dificilmente consegue um piloto para ajudar nos primeiros vôos e, pior, se quebrar hélice ou motor terá que comprá-los pelo correio pagando sedex e esperando dias para chegar. Para ter uma opção fácil de fazer e resistente o suficiente para um iniciante aprender sozinho, projetei o Buster, que ganhou este nome em homenagem ao boneco de crash-test do programa MythBusters, do Discovery Channel. O teste básico deste modelo foi lançá-lo sem ajustes prévios, voá-lo, acertar um poste com ele e em seguida mergulhar de 20m de altura no asfalto. Ele sobreviveu a tudo isto, como mostra o filme. Também para ajudar a montar o primeiro modelo, preparei a lista de preços do artigo "Quanto Custa", que se baseia no equipamento que uso neste modelo, mas serve para a maioria dos modelos elétricos. O avião pode ser comprado em kit ou semi-pronto. Ou montado pelo próprio modelista, o que pode parecer difícil, mas não é. O importante é fixar seu objetivo e planejar o que vai fazer. Não é difícil e quando estiver com dúvida, pergunte.

MONTANDO UM PACK DE NICD OU NIMH

Montando um pack de NiCd ou NiMh Por sandro mendes Apesar de estarmos na era das LiPos, muitas vezes é preciso montar packs de NiCd ou NiMh para usar no transmissor ou receptor, ou mesmo em um modelo diferente, automodelo ou nautimodelo. Neste exemplo usei algumas células NiMh frajutas compradas em um outlet qualquer (na verdade, ganhei-as). Não recomendo comprar baterias nestes lugares, geralmente são falsas e de péssima qualidade (veja na foto abaixo o resultado da ciclagem em um par de pilhas novas destas). Um lugar confiável para comprar pilhas recarregáveis é a http://www.1001pilhas.com.br/, as marcas Saft e DLG são excelentes, não para voar, mas para tranmissores e receptores vão muito bem. A primeira tarefa para montar o pack é "montar" o pack... Ou seja, juntar as células no formato que terão. Para isto um truque que aprendi com o Paulo César, da PC Eletrônica, é colá-las com cola quente. Se necessário, lixe os terminais (na foto usei uma lixa de umha para demonstrar), mas isto não é realmente necessário se for usada a técnica descrita no tutorial de soldagem (http://www.e-voo.com/solda). Após montar o pack no formato correto, aplique fluxo de solda nos terminais de um lado, na foto prendi o pack na vertical usando um alicate universal e um elástico de dinheiro para segurá-lo enquanto soldava. Estanhe com solda de boa qualidade (uso da marca Best, da azul (67%Sn/33%Pb), um terminal por vez, tomando o cuidado de aplicar o soldador o mínimo de tempo necessário, evitando assim danos à pilha. Em seguida, separe pedaços de fio que serão usados para interligar os packs (normalmente uso sobras de fio de fonte de PC, como na última foto. Descasque uns 10cm do fio, torça-o para que os filamentos não se separem, e em seguida estanhe com cuidado. Em seguida, corte a ponta do fio (que sempre fica ruim) e solde em uma das células, segurando firme enquanto a solda esfria para evitar que fique quebradiça. Depois da solda esfriar, encoste o fio no próximo terminal e solde a ele, cortando com alicate de corte a sobra. Repita o processo em todas as ligações, por último solde os fios preto e vermelho que irão para o conector. Dependendo do caso, pode ser que um dos fios precise ser ligeiramente maior para que possa haver um caminho para que o positivo e o negativo saiam juntos do pack. Em várias lojas de eletrônica, principalmente as que vendem células soltas para montagem, há plásticos termoretráteis para fechar os packs. Mas na falta deste, pode-se usar fita adesiva colorida, transparente, fita crepe ou outro material isolante.

PLANTA DO TUCANO T-27

Planta do Tucano em arquivo PDF e no formato A4 A pedido de um leitor anônimo postaremos aqui a planta do Tucano T-27 só que desta vez não postaremos em formato CAD (dwg) e sim em PDF para que seja aberta em qualquer computador com um leitor de pdf. A planta para caber em formato A4 teve que ser dividida em 24 partes criando um mosaico, junto delas também vai uma miniatura para servir de guia na montagem. Notem que as folhas 12, 18 e a 24 não tem nada nelas mas mesmo assim coloquei-as para poder compor o formato completo. Para baixar a planta clique aqui ou na imagem acima. Qualquer pedido entre em contato conosco que estaremos sempre atendendo na medida do possivel.

DIVERSOS

Programa para a Fabricação de Combustíveis Programa de Conversão de Medidas Diversas Convertendo medidas através da multiplicação Especificações dos Servos Futaba Dirigíveis Radiocontrolados Simulador de Vôo para seu computador Conheça as asas Vector para combate aéreo Conheça o Tradutor Inglês-Português de Automodelismo Qual a hélice apropriada para o seu motor? E a vela? Qual a apropriada? Simulador de comandos do rádio Conversor de Polegadas

TIPOS DE ISOPOR UTILIZADO PRA CONFECÇAO

Isopor P0 , P1 , P2 , P3 : saiba a diferença O material mais comum usado para confeccionar aeromodelos eletricos. o nosso Isopor existem varios tipos, P0, P1, P2, P3, P4, P5, P6... Os mais comuns são: P0: média de 12g/dm² P1: média de 16g/dm² P2: média de 20g/dm² P3: média de 24g/dm² P0 é o comum de papelaria, dá para usar em alguns modelos mas precisa de alguma cobertura (de fita adesiva, depron, etc.) para não esfarelar. P2 seria até usável, se não fosse meio molenga. O P3 vai bem para a maioria dos modelos. Para acabamento mais detalhado usam-se P4, P5, P6, que são ainda mais duros. A superfície do P6 lembra bastante gesso, bem dura, mas é preciso tomar muito cuidado com o peso. exemplo de alguns aeromodelos fabricados com Isopor P3



LINKS UTEIS

Links úteis Não estou brincando quando digo que este é o primeiro site dedicado aos pequenos aeromodelos elétricos da internet brasileira. Eu, pelo menos, não encontrei outro antes de criá-lo, e olha que eu procurei bastante! Entretanto, existem muitos sites relacionados ao aeromodelismo tradicional com bastante qualidade e informação sobre o esporte em português bem claro. Procurei listar abaixo os que eu acho particularmente interessantes, com suas devidas descrições. Além disso, estão listados alguns sites de lojas, sites estrangeiros (em inglês, francês, alemão) com muitas fotos e artigos interessantes sobre slowflyers e parkflyers. Os links estão separados por categoria e eu pretendo atualizar sempre esta página. É gentileza me informar, caso perceba que algum destes links não esteja funcionando corretamente. As opiniões aqui expressadas, bem como em qualquer outra parte deste site, são pessoais minhas, do ponto de vista de aeromodelista e consumidor. Aeromodelistas Eduardo Afonso Página do Eduardo Afonso, com design bem bacana e conteúdo bem escolhido. Disponível em três idiomas: português, inglês e francês. Gustavo Exel Excelente piloto e fotógrafo, tem dicas de construção e milhares de ótimas fotos aéreas. Aeromodelistas no exterior Bruce Abbot Bastante informação sobre aeromodelismo elétrico e ainda uma seção sobre eletrônica para aeromodelismo. David Theunissen David Theunissen é o criador deste site bem interessante sobre aeromodelismo elétrico, com uma área dedicada especialmente a modelos indoor. Fotos de aviões diferentes e plantas para download. Designsoft Informações sobre aerofotografia e circuitos eletrônicos para RC, como ESC brushed e switch para fotos. Gert Jan Modelos elétricos e algumas informações sobre motores brushless Mike's flying scale model pages Página sobre modelos de vôo livre, dicas muito legais sobre construção de modelinhos Team Ariane Site alemão com informações técnicas e montes de fórmulas usadas para cálculo de sustentação, arrasto, etc. Tyson RC Planes O site do norueguês conhecido como Tyson dá uma boa mostra do que é possível fazer com materiais alternativos, como o Depron. Vale a visita pela criatividade do cara. Em inglês. Clubes e pistas de aeromodelismo Asas do Japi Clube em Jundiaí com uma excelente pista asfaltada em um ótimo local, aos pés da Serra do Japi CASA - Clube de Aeromodelismo de Santana Tradicional clube de VCC, agora ampliando a estrutura para oferecer também locais para RC elétricos e nautimodelos GABA - Grupo de Aeromodelistas Birutas do Arujá Clube de aeromodelismo da cidade de Arujá - SP GVRC - Grupo Vector de Aeromodelismo Rádio Controlado Clube de Viamão-RS Dados técnicos Electricalc Informações e comparativos NiCd x LiPo, como resistência interna, curva de descarga, etc. Mr. RC-Cam Site com dicas e produtos para fotografia aérea Diversos skystone Milhares de fotos antigas, charges, plantas, páginas de revistas sobre modelismo Eletrônica & Cia DazyWeb Laboratories Osciloscópio e outros instrumentos por soft (pela placa de som do PC), útil quem não tem osciloscópio e precisa analizar algum sinal Discover Circuits Milhares de circuitos eletrônicos para as mais diversas aplicações Electronic Gadgets for Radio Control Página com vários circuitos úteis em RC. A maior parte é defasada devido às mudanças tecnológicas desde que foi criado o site, mas tem bastante coisa interessante. Everything You NEVER Wanted To Know About Radios ! Informações sobre técnicas rádios AM, FM, modução, etc. Philip Sun Circuitos para RC WAVEosSCOPE Programa (em alemão, mas fácil de usar) que mede a velocidade de um modelo a partir de passagens razantes gravadas em áudio. Fabricantes no exterior GWS (Grand Wing Servo) Fabrica equipamentos para elétricos (com destaque para os receptores e servos), e modelos baratos e com ótimas qualidades de vôo, como o SlowStick, PicoTigerMoth, E-Starter, Formosa, PicoPiper, etc. Fóruns sobre modelismo Aeronline Bastante informação útil para quem quer dicas sobre modelismo à explosão Chico Hobbi O Chico Bendler é um grande piloto de heli RC, e seu fórum um dos mais ativos do ramo RCgroups (em inglês) Maior fórum do gênero do mundo, tem informações sobre todos os ramos do modelismo. RCmasters O RCmasters é um dos maiores fóruns sobre automodelismo em Português e um ponto de parada obrigatório para quem gosta de carros RC. Lojas nacionais Ace Wings Fábrica e loja virtual de asas voadoras Aeromaníacos Loja em São Bernardo do Campo que vende equipamentos para aero, nauti e automodelismo. Asas Elétricas Esta loja começou vendendo asas voadoras com motor 400, e conforme a tecnologia nos elétricos foi evoluindo passou a vender também outros tipos de modelos, motores Brushless, baterias LiPo, speeds, servos, etc. Atendimento rápido e preços bons. Big Field Aeromodelismo Loja carioca especializada em aero que entrega via Sedex para todo o Brasil com grande variedade de produtos on-line. Além disso, aceita encomendas de produtos importados que não estão no catálogo. Casa Aerobrás Antiga loja especializada em materiais de construção e kits de balsa. É um ótimo lugar para conseguir arames, rodas, tubos, varetas. Tem muitas plantas que podem ser aproveitadas para elétricos. Também vende Pluma 3mm e 4mm. Chico Hobbi O Chico Brendler é um dos melhores pilotos de heli do Brasil, e tem esta loja com peças principalmente para heli, mas também muita coisa de rádio, elétricos e 3D. HiperEletricos Loja virtual de Curitiba, com modelos da ArtTech e outros materiais para elétricos HM Modelismo Loja de modelismo em Guarulhos-SP, tem loja virtual e fica bem acessível para o pessoal da ZN/ZL de SP. Hobby Delivery Loja exclusivamente virtual que atua em todas as áreas do modelismo. Em aero, oferece tudo o que é necessário, desde modelos à acessórios de construção. Oferece alguns combos e parcela em 3x sem juros. HobbyFly Loja virtual do Júlio, trabalha com motores, receptores, servos, cristais, hélices, etc. Todos para vôo elétrico. Entrega rapidamente por Sedex e os preços são bons. Hobbys A loja do Medeiros, moderador da maior lista de aeromodelismo do Brasil. Bom site, bons preços. Como destaque, vende componentes de rádio separadamente e peças de reposição como antenas. Nimbus Company a loja paulista atua em todos os seguimentos do modelismo radio-controlado, com ênfase no aeromodelismo. Bons preços e um imenso catálogo on-line. Pipas Esportivas Vende pipas esportivas, varetas e tubos de fibra de carbono. Os tubos e varetas são bastante utilizados para fazer longarinas de aviões maiores. RC Tech Quando conhecemos o Fred ele já montava há tempos seus próprios motores, depois passou a montar para os amigos, a importar os kits da Komodo, ... Acabou montando uma loja virtual, com uma boa variedade de produtos e modelos de qualidade e bons preços. TwoHobbies Loja de Fábio Scattone, vende aeromodelos e bicicletas, daí o "two" do nome. Fábio foi um dos primeiros lojistas a se envolver com modelos elétricos. Na loja real há muito mais produtos do que na loja virtual, caso não ache algo na virtual, telefone. Lojas no exterior Aeromicro Esta loja americana tem ótimos preços sobre os produtos da GWS, apesar de não vender os kits. Dê uma olhada também na sessão de dicas onde tem algumas coisas úteis! Air Craft World Loja no japão (em inglês) que vende equipamentos para elétricos com frete barato. Dynamics Unlimited Loja especializada em equipamentos para micro-vôo. Vale a pena olhar mesmo que não vá comprar nada. Hobby Lobby A loja oferece muitos modelos para se escolher, além de uma enorme lista de acessórios. Dicas para iniciantes e video clips de demonstração dão um toque a mais. Horizon Hobbies Dentro da área de aero, procure pelos modelos elétricos. Além de uma boa variedade e bom preço, a loja oferece alguns artigos e dicas interessantes. Parkflyers.com Especializada nestes modelos, a loja oferece todos os acessórios necessários e muitos modelos prontos para voar. Os aviões estão separados por tamanho e as especificações são (quase) boas. RC-Fever Loja na China com ótimo atendimento e muitos artigos de aeromodelismo, principalmente helicópteros e peças de reposição. Tower Hobbies Apesar de não ter os melhores preços, esta loja chama atenção pela grande variedade de itens à venda e de hobbies cobertos. Em aero, os produtos separados por categoria facilitam a busca. A descrição dos produtos geralmente é boa. Material para construção Arterm Loja na Zona Leste especializada em isolamentos térmicos, vende isopor P3 de ótima qualidade, com tamanho a gosto do freguês. É preciso fazer o pedido antes pois o corte não fica pronto na hora. Divterm Loja na Barra Funda especializada em isolamentos térmicos, vende isopor P3 em vários formatos, com tamanho sob encomenda Papelaria Jussara Papelaria de São Paulo-SP que vende materiais para arquitetura e sempre tem placas Pluma (depron) em torno de 4mm, ótimas para superfícies de cauda e shock-flyers um pouco mais parrudos. Rua Humberto I, 1069 - Vila Mariana - Fone 5579-3883/5549-8451 Styroform Distribuidor no Cambuci-SP especializado em peças para decoração, mas também vende placas e blocos de diversas densidades sob medida Pistas de aeromodelismo Aerosampa Pista em São Paulo - SP, situada próxima ao rodoanel, entre a Rod. dos Bandeirantes e Anhanguera Asas do Japi Clube de Jundiaí - SP, bem situado e com uma bela pista asfaltada UBA - União Bandeirante de Aeromodelismo Clube situado em São Paulo - SP, às margens da Represa Guarapiranga Vôo & Cia Pista em Mauá - SP, associada à loja Aeromaníacos, com fácil acesso pela Via Anchieta Plantas grátis Airplane Model Plans Site com muitas plantas, incluindo OldTimers e modelos escala Danny Soar Site em inglês com várias plantas antigas, algumas bem curiosas Das Corsair BBS Site alemão com montes de plantas para motor a explosão, mas a maioria adaptável para elétrico Electric Plans Site em inglês com várias plantas para elétricos, boa parte para motor 400 Free.fr Site francês com muitas plantas úteis para elétricos, destaque para o Garden Cub, Canadair e Drenalyn Gene Bond's RC plans Plantas grátis para vários modelos elétricos Jetex Plantas de diversos modelos free-flight movidos a foguete Mike's flying scale model Diversas plantas para vôo livre e dicas para esta modalidade Pedro Quaresma Site português com informações sobre aeromodelos e várias plantas para glow Pedro Quaresma Site português com plantas e dicas Rasmus Modellflyg Site alemão com muitas plantas Site espanhol Site espanhol com várias plantas The Plan Page Site com muitas plantas, a maioria para vôo livre mas adaptáveis para elétricos. Serviços Copiadora Expressa Adriana Gráfica rápida do nosso colega de vôo Walmir, imprime plantas na medida certa e em papel com maior gramatura, que pode até ser usado como molde para corte de isopor. CR Corte a Laser CR Corte a laser – Serviços especializados - Empresa da zona sul de São Paulo (próxima a Congonhas e Av. Cupecê) que faz corte e gravação de balsa e outros materiais não metálicos. Simuladores FMS Hangar Diversos modelos para FMS FMS Homepage Página oficial do site do melhor simulador gratuíto disponível FMS Model Data Vários modelos para FMS Modelos para FMS Vários modelos para FMS PICjoy Simulador de joystick para TX Planes for FMS Vários modelos para FMS RCsim Site com modelos para quase todos os simuladores Sites nacionais Aero Clube de Belo Horizonte Primeiro Aero Clube de aeronaves elétricas por controle remoto de Belo Horizonte desde 2003, com informações sobre os locais de vôo em BH, fotos de modelos e dicas. Aeronline O clube virtual de aeromodelismo congrega muitos adeptos e cumpre muito bem seu papel, tendo em suas páginas assuntos de intersse tanto de iniciantes quanto de experts. Fóruns, listas e até um chat fazem a interação dos visitantes. AMAM - Associação Maranhense de Modelismo Portal e fórum da AMAM, com informações de locais de vôo na região nordeste e dicas que valem para todo o Brasil. Amigos do vôo / Vôo Silencioso Site com informações interessantes sobre planadores e um ótimo tutorial de planador para iniciante Helisport Site e fórum sobre helimodelismo, criado por um grupo de pilotos com o objetivo de divulgar o helimodelismo e facilitar a entrada neste hobby da melhor forma possível. Sites no exterior Aeronutz Um belo site do clube inglês de mesmo nome, com muitas fotos de seus micro aviões em escala. Electrif Flight in Colorado Cálculo de torque necessário em servos e outras informações sobre aeromodelismo FlyRC Revista FlyRC, contém vários artigos muito interessantes, em especial o de rodas Windsock Site australiano sobre vôo de encosta, com dicas para iniciantes, fotos dos locais de vôo e muita informação útil Veículos elétricos Brazil Electric Distribuidor nacional de kits DIY para adaptação de motor brushless em bicicleta Cyclone bicicle DIY kits Kits de



SERVOS E ESC

Servos e ESCOs servos são pequenos motores com circuito eletrônico que, comandados pelo receptor de rádio, movem pequenos braços que acionam varetas (links) que comandam as superfícies móveis do avião. Os servos são divididos em diversos tamanhos. Os que interessam para modelos elétricos são: Standard: Pesam mais de 40 gramas cada, e são usados pela maioria dos modelos a explosão e pelas asas Zagi e similares; São muito grandes e pesados para a maioria dos modelos elétricos; Mini: Entre 20 e 40 gramas, são ligeiramente menores que os Standard; Micro: Pesam abaixo entre 10 e 20 gramas, podem ser usados em alguns projetos de modelos elétricos, dependendo do tamanho do avião e das características de construção; Submicro: São divididos em Pico e Naro, ambos abaixo de 10 gramas, usados pela maioria dos modelos elétricos e pequenos planadores. Nos modelos a explosão um dos servos tem a função de acelerador e controla a abertura da borboleta do carburador. Nos aeromodelos elétricos esta função foi assumida pelo ESC (Electronic Speed Control), também chamado de "Speed Control". As principais funcionalidade que o ESC são: Controlar a potência do motor BEC - Battery Eliminator Circuito: fornece alimentação para o receptor, evitando a necessidade de uma bateria separada; Cut-Off: interrompe o fornecimento de energia para o motor quando a bateria estiver abaixo de um certo nível. Para uso com baterias LiPo (Lithium Polymer), o Cut-Off deve ser acima de 6V. Algumas pessoas perceberam em testes que nem sempre é necessária esta preocupação, porque na maioria dos modelos o motor fica muito fraco para manter o vôo antes da atuação do Cut-Off, obrigando o piloto a pousar; Break: em motoplanadores com hélice dobrável é necessário que o motor seja freiado para que a hélice se feche. Esta função coloca os dois pólos do motor em curto, fazendo-o parar de girar, quando a potência é cortada; Todos os fabricantes têm diversos modelos de speed control, com diferentes características, mas as principais são a tensão e a corrente máxima e peso. Inicialmente um Speed Control para 8A como o ICS-300 da GWS é uma boa opção com um bom preço, se não houver necessidade de um Cut-Off para baterias LiPo.

AEROMODELOS IMPORTADOS

Carl Goldeberg - Aeromodelos Dynaflite - Aeromodelos Great Planes - Aeromodelos KYOSHO - AEROMODELOS SEAGULL - AEROMODELOS Aeromodelos ARF (montados) SIG- AEROMODELOS (kits para serem construídos) TOP FLITE - AEROMODELOS Hobbico Avistar 40 AWARF HCAA 2015 Extra 300S Plus 60 AWARF HCAA 2080 Hobbistar 60 AWARF HCAA 2100 Extra 300 60 AWARF HCAA 2605 SuperStar .40 hcaa 2055 SuperStar .60 hcaa 2058 Starfire 40 hcaa 2060 TwinStar Bi motor hcaa 2075 Airvista 40 hcaa 2200 Dynaflite DYFA 2014 Skeeter planador 1,41 metros enverg DYFA 2016 Bobcat planador 2 metros c/aileron DYFA 2018 Day Dream planador 2 metros DYFA 3015 Pussycat planador 2 metros DYFA 3020 PT-19 1,20 p/motor 1.08 2 t 1,60 4 t DYFA 3025 Super Cub 2,64 metros enverg 1,60 4 t DYFA 3036 Fly Baby Giant ¼ 2,14 metros enverg DYFA 3035 Super Decathlon Giant Scale DYFA 4502 Bird of Time planador 3 metros enverg Midwest 1777 North American AT-6 MIDA 0177 180 Extra 300 S MIDA 0180 186 G-202 Airplane MIDA 0186 CAP 232 MIDA 0187 Super Stinker MIDA 0182 Super Stearman MIDA 0184 Midwest Little Cap 232 MIDA 0188 Extra 300 XS "New" MIDA 0189 MIDA 1091 Painel de instrumentos p/ Extra 300S MIDA 1092 Painel de instrumentos p/ AT-6 MIDA 1094 Painel de instrumentos p/ S. Stinker MIDA 1096 Painel de instrumentos p/ S.Stearman MIDA 1103 Painel de instrumentos p/ G-202 MIDA 1104 Painel de instrumentos p/ CAP 232 MIDA 1105 Painel de instrumentos p/ Dynaflite PT-19 MIDA V171 Canopy p/Extra 300#180 Ohio 101 Super Chipmunk 81" OHRA 1101 102 DHC-1 Chipmunk 82" OHRA 1102 103 Pepsi Chipmunk 81" OHRA 1103 115 Ultimate 10-300S 75" OHRA 1115 122 Extra 300S 84" OHRA 1122 130 Sukhoi SU-26mx 84" OHRA 1130 302 Cap 232 97" OHRA 1302 301 Extra 300L 102" OHRA 1301 Simprop – kits ARF Alemanha SIMP 0395 planador SE 200 – 2m SIMP 0484 planador Fuego – 2m SIMP 0557 planador Sagitta – 2,20m SIMP 0662 planador Lift Off – 2m SIMP 0670 Silence –61 z 91 4 tempos 1,66m SIMP 0689 planador furore – 3,40m SIMP 0832 planador ASW 28 – 2,50m SIMP 8248 planador Solution XL – 4m Thunder Tiger Champion-30 L ARF TTR 4453 Eagle 30 H ARF TTR 4454 Super Decathlon-40 ARF TTR 4455 Champion 45L ARF TTR 4456 Little Tiger 15 ARF c/motor.15 TTR4496 Tiger Trainer 25 ARF TTR 4508 Tiger Trainer 60 ARF TTR 4503

BATERIAS

BateriasExistem vários tipos de baterias úteis para aeromodelismo. A bateria sempre deve ser dimensionada de acordo com o modelo, pois uma bateria muito pequena não fornecerá a corrente necessária para obter a potência desejada para o motor, e uma bateria muito grande ficará pesada demais. Nem toda bateria recarregável serve para aeromodelismo, pois são projetadas para entregar pouca potência. As baterias têm que ser de boa qualidade e ter uma alta taxa de descarga. Chumbo-ácido Apesar de não serem usadas nos aviões, são muito úteis na caixa de campo. Muitas vezes o local do vôo não é muito perto de onde se estaciona o carro, inviabilizando a ligação do carregador de baterias direto na bateria do carro. Geralmente usam-se baterias de 12V x 7A, que têm uma carga suficiente para recarregar as baterias várias vezes durante o dia e não são pesadas demais. Estas baterias geralmente são carregadas com um carregador lento de parede. NiCd - Niquel-CádmioSão as baterias recarregáveis mais baratas e comuns. As usadas em modelismo elétrico suportam grandes descargas e cargas rápidas, mas são um pouco pesadas. Apesar de funcionarem bem, como peso geralmente é crítico, é melhor procurar alternativas mais leves. NiMh - Niquel-Metal-Hidreto São mais leves que as de NiCd mas geralmente têm taxa de descarga menor. Como baterias de NiMh com o mesmo peso geralmente têm o dobro da capacidade das NiCd, mesmo com menor 14:04 26/5/2005capacidade de descarga são uma ótima opção para aeromodelos. Atualmente estou usando packs de bateria NiMh de 300mAh e 1400mAh LiIon - Íons de Lítio São mais leves que as de NiCd e NiMh, mas não conseguem taxas de descarga tão altas, por isto são limitadas a motores de baixo consumo e seu uso deve ser feito com cuidado. O processo de carga também é diferente e exige carregadores especiais. Tenho usado baterias de LiIon 7,2V * 1400mAh com excelentes resultados, para descarga até 7A. LiPo - Polímero de Lítio São leves como as LiIon, mas têm maior capacidade de descarga, tornando-as viáveis para uso com motores 400 e 480. Atualmente as LiPo têm capacidade de descarga entre 8C e 12C, o que as torna uma excelente opção para qualquer motor (desde que escolhida uma bateria que suporte a corrente exigida). Exigem os mesmos cuidados que as LiIon. Tipos de carregadoresOs principais tipos de carregador são de tensão constante, corrente constante, e detecção de pico. Para baterias NiCd/NiMh geralmente são usados os de detecção de pico, que permitem cargas rápidas sem danificar a bateria. Para LiIon/LiPo geralmente são usados carregadores de tensão constante / corrente constante, o recomendado para as baterias. Estas baterias precisam de um maior cuidado na recarga, pois uma sobrecarga pode danificá-las permantemente e eventualmente causar acidentes com fogo. Cada tipo de bateria tem um método de carga diferente, portanto antes de comprar um carregador, verifique se é compatível com o tipo e capacidade das baterias que pretende usar.

FONTE REGULADA 12 VOLTS

Fonte de 12V regulada construída a partir de uma fonte de PC Tradução do artigo "Fuente de 12V. regulada construida a partir de una fuente de P.C." Autor: Jose Antonio Andrades de Cozar Artigo original: http://picayzumba.com/contentid-68.html Tradução: Cláudio Roberto Fernandes A tradução e veiculação deste artigo foram autorizadas pelo autor, a quem agradecemos a oportunidade de compartilhar este ótimo material. INTRODUÇÃO: A enorme proliferação de modelos elétricos que vemos na atualidade vem impulsionada pelos grandes avanços no campo dos acumuladores elétricos, que têm permitido relações peso/potência e taxas de carga e descarga impensáveis poucos anos atrás. Também se popularizaram os carregadores rápidos inteligentes, capazes de carregar uma bateria em menos de uma hora, repondo somente a carga consumida, sem provocar sobrecargas ou superaquecimentos, porém muitos desses carregadores foram projetados para funcionar exclusivamente alimentados pela bateria de um automóvel, assim, se desejamos utiliza-los em casa necessitaremos de uma fonte de alimentação que nos proporcione uma tensão estabilizada e uma alta corrente. O tipo de fonte que mais se aproxima de nossas necessidades são as que se utilizam para alimentar os transceptores móveis de rádio, que oferecem tensão estabilizada em torno de 13,5 Volts e corrente desde 3 até mais de 50 Ampères, sendo que o inconveniente dessas fontes, além obviamente do tamanho e peso é o preço, que no caso de um modelo que supra nossas necessidades (12 a 15 Ampères) pode superar, em muitos casos, o preço do próprio carregador. Existem alternativas mais econômicas, e talvez uma das mais utilizadas seja a fonte de alimentação usada nos PCs. Estas fontes são relativamente pequenas e leves, tendo em conta as altas correntes que são capazes de entregar, porém nem sempre dão o resultado que se espera delas: A tensão em aberto pode não alcançar os 12 volts, e baixa quando se drena corrente, o que impede um funcionamento correto se pretendermos carregar baterias Ni-XX de 8 elementos ou LiPo de 3 elementos com carregadores econômicos, que não disponham de elevador de tensão. Se tivermos um bom carregador capaz de elevar a tensão para carregar mais de 8 elementos Ni-XX ou 3 LiPo seguramente poderemos utilizar a fonte do PC... Sempre que a corrente que necessitamos não faça baixar a tensão além do nível abaixo do qual o carregador decide que não pode garantir um funcionamento correto e interrompe a carga. Isto pode acontecer, dependendo do modelo, em torno dos 10,5 a 11 Volts. Finalmente também pode acontecer que a própria fonte decida que a queda de tensão deve-se a um consumo excessivo, e desligue para evitar danos, e isso pode ocorrer com correntes de 2 ou 3 Ampères, ridículas se as comparamos com os mais de 8 Ampères que – em teoria – poderia ser drenada da linha de 12 Volts de uma velha fonte AT de 200 Watts. As explicações que se dão para esse fato são as mais variadas, sendo que a mais aceita é que esse tipo de fonte necessita uma certa carga ligada à linha de 5 Volts para entregar toda a corrente na linha de 12 Volts, a qual nos leva à solução típica: desperdiçar energia conectando uma resistência de carga ou uma lâmpada automotiva na linha de 5 Volts, para elevar a linha de 12 Volts em alguns décimos de Volt que permitam um funcionamento mais ou menos correto do carregador. Naturalmente, ainda que isso nos dê uma certa margem de manobra em alguns casos, não é a solução do problema. O CONCEITO: As fontes de PC são fabricadas cingindo-se a um critério fundamental: A economia de custos, algo que resulta evidente se pensamos que um produto fabricado na China e que tem de atravessar metade do mundo, passando pelas mãos de um importador, um distribuidor e vários transportadores , vem a custar uns 10 ou 12 Euros na lojinha de informática da esquina. A tensão mais importante em uma fonte de PC é a de 5 Volts, já que com ela serão alimentados quase todos os circuitos lógicos do computador. Poderíamos pensar que é mais importante a tensão de 3 Volts a partir da qual se alimenta o processador, mas existem reguladores na placa-mãe que estabilizam as tensões de alimentação do processador. Entre as menos importantes se encontra a linha de 12 Volts, que se usa somente para alimentar ventiladores, motores de HD, Floppy-discs, CD-ROM, DVD, e para comunicações via RS-232. Os requisitos mais exigentes se conformam com uma tolerância de 15% nas linhas de +3, +12, -5 e –12 Volts. A única tensão estabilizada que encontraremos é a de 5 Volts, e todas as demais são referenciadas a ela, assim, a solução para convertermos nossa fonte de PC em uma fonte de 12 Volts estabilizados é modificar o circuito de realimentação do regulador. Por sorte a grande maioria das fontes AT e ATX usam como regulador o mesmo CI: o controlador PWM TL494 (http://focus.ti.com/lit/ds/symlink/tl494.pdf) ou seu clone, o CI KA7500 (http://www.fairchildsemi.com/ds/KA%2FKA7500C.pdf), o que nos vai permitir “afinar” quase qualquer fonte seguindo algumas diretrizes simples, independentemente de modelo ou fabricante. ANTES DE COMEÇAR... São necessários para este trabalho alguns conhecimentos básicos de eletrônica (identificação de componentes e capacidade de seguir um esquema simples), um pequeno ferramental (soldador tipo lapiseira com ponta fina, de 30 a 40 Watts, sugador de solda, multímetro, alicates, estilete, etc...) e certa habilidade no manejo dessas ferramentas. Desaconselho totalmente a realização destas modificações a qualquer um que não disponha dos conhecimentos, habilidades e equipamento necessário, já que no interior da fonte vamos encontrar tensões perigosas de 127 (ou 220) Volts alternados e até 310 Volts contínuos, que podem provocar lesões graves e inclusive a morte se não se tomam às precauções apropriadas. QUALQUER MANIPULAÇÃO DA PLACA DEVE SER FEITA COM A FONTE DESLIGADA E DESCONECTADA DA REDE ELÉTRICA !!!!! O autor (e também o tradutor) descreve o presente procedimento de modificação somente a título informativo, e isenta-se de qualquer responsabilidade por danos ou mau funcionamentos dele derivados. Mãos à obra. Não é necessário comprar uma fonte nova de alta potência para este projeto, qualquer fontezinha de 200 W nos proporcionará mais de 8 A na saída de 12 V, mais que suficientes na maioria dos casos. De fato, uma arcaica fonte AT que alimentava um computador de mais de dez anos seria ideal para nosso propósito, já que sua placa é muito mais simples e despojada, com menos componentes, dado que possui menos linhas de tensão. Para ilustrar este processo escolheu-se uma fonte ATX de 300 W para Pentium III, procedente da sucata. Uma vez escolhida a vítima, devemos localizar o controlador PWM. Como dissemos antes temos de buscar um TL494 ou equivalente (DBL494, IL494, GL494, SL494, KIA494...) ou seu clone, o KA7500. Neste caso, encontramos um TL494. Uma vez localizado, ligaremos a fonte – simplesmente acionando o interruptor se é AT ou unindo o fio verde a um dos pretos se é ATX – e ligando o fio preto do multímetro a um dos fios pretos da fonte, e medindo a tensão presente no pino 1 do controlador. Neste caso, como quase sempre, encontramos 2,5 V (na verdade, 2,46 V, devido às tolerâncias dos componentes). ATENÇÃO !!! Devemos proceder com extremo cuidado, já que, como foi dito antes, em uma fonte ligada existem tensões muito perigosas. Além disso, se por descuido curto-circuitarmos com a ponta de prova do multímetro os pinos 1 e 2, deixaríamos sem referência o controlador, e isso provocaria flutuações nas tensões de saída que poderiam danificar os capacitores. Chegando a este ponto é conveniente que entendamos um pouco o funcionamento de um controlador PWM. Como podemos ver no diagrama de blocos presente no datasheet do integrado, os pinos 1 e 2 são as entradas de um comparador. No pino 1 encontramos uma tensão de realimentação tomada da linha de +5V, se bem que em teoria se poderia encontrar qualquer tensão entre 0 e 5 V, na prática e depois de testar várias dezenas de fontes, sempre se encontrou 2,5 ou 5 V. No pino 2, que é a outra entrada do comparador, encontraremos a tensão de referência, tomada a partir da saída de 5 V presente no pino 14 do controlador, que na prática é a mesma tensão que medimos no pino 1. Na verdade é o próprio comparador que se encarrega de manter iguais essas duas tensões, já que se cai a tensão da linha de 5 V devido a um aumento de consumo, o controlador aumenta o duty-cycle do sinal de comutação para que a tensão suba e se iguale à referência, e vice-versa se a tensão da linha sobe devido a uma diminuição momentânea do consumo. Nisto consiste a regulação de uma fonte chaveada, e nossa missão é conseguir que o sinal de realimentação presente no pino 1 do controlador proceda da linha de +12 V ao invés de da +5 V. A idéia é muito simples: Mediante um divisor resistivo devemos obter um sinal de realimentação para o comparador, e este divisor deve ser tal que, quando a tensão proporcionada pela linha de +12 V seja a que desejamos, a tensão de saída do divisor seja igual à referência presente no pino 2. Nesta imagem podemos ver duas redes de realimentação compostas por simples divisores de tensão resistivos. A primeira é muito similar à de uma fonte de PC que tenha tensão de referência de 2,5 V, e a segunda é a que deveríamos por em seu lugar. Em teoria, sem mais modificações do que trocar um resistor poderíamos obter 12 V na linha de 5 V, porém na prática isto causaria sérios problemas, assim o que faremos será anular a realimentação existente e proporcionar ao controlador uma nova realimentação tomada da linha de 12 V. Vamos tomar um valor fixo para um dos resistores e calcular o outro. O valor deve ser relativamente alto para não desperdiçar corrente, porém suficientemente baixo para que a impedância de entrada do comparador não influa no resultado. 2K7 parece ser um valor adequado. Agora calcularemos o valor do outro resistor para obter a tensão desejada, que neste caso é 13,5 V. Este valor não foi escolhido ao acaso, é o valor que temos em uma bateria automotiva de 12 v plenamente carregada. Suponhamos em primeiro lugar uma tensão de referencia de 2,5 V, que é a que encontramos neste caso: R2 = [(Vout * R1)/Vref] – R1 R2 =(( 13.5 * 2700 ) / 2.5) - 2700 = 11880 ohms Na prática usaremos um resistor de 12K, que é o valor comercial mais próximo. Se encontrarmos qualquer outro valor de tensão de referência, ou que desejemos conseguir uma tensão diferente na saída, basta calcular a rede de realimentação necessária usando as mesmas fórmulas. Uma vez que tenhamos adquirido os resistores necessários para nosso projeto, continuamos com a modificação. Desmontamos a placa do chassi e eliminamos todos os cabos de saída que não iremos utilizar, deixando apenas 3 pretos (terra), 3 amarelos (+12 V) e o verde (acionamento). Deixamos vários fios amarelos e pretos porque são de seção demasiado fina para as correntes envolvidas. Como alternativa pode-se substituir esses fios por outros de seção adequada. Soldamos o extremo do fio verde à massa, em uma das ilhas que ficaram livres depois da retirada dos fios pretos. Agora preparamos nossa rede de realimentação. Soldamos um terminal do resistor de 2K7 a uma ilha de massa e um terminal do resistor de 12K a uma ilha de +12 V. Os terminais livres de ambos os resistores são então soldados juntos. Antes de continuar, faremos um teste para verificar se tudo está correto. Ligaremos a fonte (é recomendável tornar a montar a placa no chassi) e conectando o fio preto do multímetro ao terra do circuito (fios pretos da fonte) mediremos a tensão presente no ponto médio de nossa rede de realimentação (união dos dois resistores). Se tudo estiver em ordem, teremos uma tensão de referencia próxima dos 2 V. Se dividirmos a tensão da linha de 12 V por esse valor, e multiplicarmos esse resultado pela tensão de referencia original do pino 1 (2,5 V), o resultado deve ser muito próximo do que esperamos encontrar ao final na linha de 12 V (13,5 V). Se a tensão que encontrarmos não é a esperada, teremos que verificar o processo até encontrar o erro, pois os passos seguintes não admitem erros. Chegando a este ponto, e correndo o risco de parecer exagerado, quero voltar a insistir na necessidade de um cuidado extremo, já que qualquer mínimo erro cometido no processo pode ser a diferença entre o sucesso e alguns fogos de artifício (os que já tenham visto explodir um capacitor eletrolítico saberão ao que me refiro). Ainda que nas fotos se veja a fonte funcionando fora do chassi, isto foi feito visando a clareza das fotos, e NUNCA se deve faze-lo. Lembrem-se de que na placa estão presentes os 127 (ou 220) Volts alternados da rede e mais de 300 Volts em tensão contínua.. Novamente deveremos desconectar a fonte e desmonta-la do chassi para localizar o pino 1 do controlador. Uma vez identificado, cortaremos a trilha que o liga à realimentação da linha de 5 V. ATENÇÃO!!!!!! A partir deste momento e até que tornemos a conectar o pino 1 do controlador à nova rede de realimentação é IMPERATIVO que não voltemos a ligar a fonte SOB NENHUM PRETEXTO !!!!!! Agora ligamos mediante um fio o pino 1 do controlador ao ponto médio de nossa rede re realimentação. Devemos nos assegurar que todas as soldagens estão perfeitas, em especial a feita no pino 1 do controlador. O mais difícil já está feito.Tornemos a revisar tudo até estarmos seguros de que não tenhamos cometido nenhum erro. Voltemos a montar a placa no chassi e (por precaução) afastemos o rosto antes de ligar a fonte. Isso pode parecer exagero, mas os capacitores eletrolíticos REALMENTE explodem quando sua tensão de trabalho é ultrapassada. Voilá ! conseguimos uma saída de 13,35 V em lugar dos 13,5 esperados, e isso é devido às tolerâncias dos componentes envolvidos. O que realmente importa é que esses 13,35 V vão ser mantidos ao drenarmos corrente da linha , e assim teremos nossa fonte estabilizada. Agora resta apenas algum trabalho de maquiagem para deixar a fonte a nosso gosto. Para terminar, um aviso de um possível problema: Ainda que nossa fonte regule corretamente a saída, é possível que desarme ou funcione de maneira errática ao drenarmos determinada corrente. Isto pode acontecer porque na placa há alguns comparadores de janela que monitoram as tensões e inibem o funcionamento do regulador se qualquer uma delas sobe ou baixa além dos parâmetros determinados pelo fabricante. A saída desses comparadores atua no pino 4 do integrado. No caso de ocorrer essa situação, devemos verificar se as tensões alcançadas pelas linhas de +3, +5, -5 e –12 V. Se nenhuma delas é potencialmente perigosa para os capacitores eletrolíticos (cuja tensão de trabalho geralmente é bastante “justa”), poderíamos cortar a trilha que leva ao pino 4 e conecta-lo ao terra. Se a tensão de alguma(s) das linhas se aproxima de valores perigosos, devemos eliminar os respectivos capacitores. Este procedimento requer uma boa dose de conhecimento de causa, e não é indicado para principiantes. A modo de epílogo: Quando terminei a confecção deste artigo, comprei uma maravilhosa fonte ATX de 450 W para modificar, e ao abri-la... ZÀS!!!!! A primeira surpresa: me deparei com um desconhecido. O CI DR-B2002: Curiosamente fui incapaz de encontrar o datasheet deste controlador. Quase que a única referencia que aparece a ele na Internet é uma consulta em um fórum norte-americano com um pedido do datasheet, seguida de inúmeros “passe para mim também”... De qualquer modo, fazendo alguma engenharia reversa, descobri que a realimentação do comparador era feita pelo pino 14 do integrado, e a modificação foi realizada sem maiores problemas. Se notarmos que aparecem muitos casos como esse poderemos documentar a modificação posteriormente Complemento para quando não for necessário aumentar a tensão da fonte Por Arthur Benemann Como notei algumas dúvidas sobre a conversão de fontes para alimentar carregadores servos, receptores, arcos de corte, etc. decidi fazer este tutorial. Utilizei uma fonte AT de 250W, esta fonte fornece voltagens de -5V, 5V, 12V, -12V. Atenção: só mexa na fonte se a mesma estiver fora da tomada, mas mesmo assim cuide para não tocar os terminais dos capacitores, pois eles ainda contém uma boa carga de energia!! Material necessário: 1 resistor 10 Ohms 10W ; 1 resistor 470 Ohms 1/4W; 1 led verde 5mm; 5 bornes(1 preto os outros vermelhos). As saídas da fonte têm cores padronizadas, que são: 5V: vermelho; 12V: amarelo; -5: Branco; Power good: laranja; -12: azul; Gnd,Neutro: Preto. Fontes AT Abra a fonte retirando os parafusos superiores. Corte os fios deixando uns 20 cm apartir da fonte(guarde os conectores pois voce provavelmente vai necessitar deles no futuro). Ligue um resistor de 10 Ohms 10W (quanto mais watts melhor só não exagere) entre um fio neutro e um fio de 5V (preto e vermelho). Prenda-o em uma parte livre da fonte não deixando seus terminais tocarem em nada. Este resistor servirá de carga estabilizando a fonte. Caso sua fonte tenha uma chave liga desliga externa (meu caso), posicione-a em algum lugar de fácil aceso (prendi ela ao topo da fonte vide fotos). Pode ser necessário encurtar o fio. No caso de interruptor tipo gangorra, muitas vezes pode-se aproveitar o conector de saída para o monitor, tomando o cuidado de eliminar a saída de monitor retirando os fios na placa. Ligue um led em serie com um resistor de 470 Ohms,e então no fio power good e no neutro (laranja e preto). O terminal mais curto do led ou o do lado chanfrado deve ir no neutro (preto),e o outro no resistor, e então no fio power good(laranja). Isole tudo e faça um furo onde quiser botar o led, fixe-o. Desencape, junte e estanhe os fios,de acordo com sua utilidade, vermelho com vermelho, amarelo com amarelo. Fure os espaços para os bornes e lige-os nos fios , utilizei esta ordem -12V,12V,Neutro,5V,-5V. As saídas de -12V e -5V são de baixíssima corrente, mas podem servir para pequenas experiências. Obs: como meus borns não eram isolados fis aruelas de vinil 1mm. Teste as tensões e feche a caixa. Pode-se simplificar as ligações, não usando led para indicar que está ligado, e usando bornes apenas para o neutro e 12V (preto e vermelho respectivamente), eliminando as saídas não utilizadas. Fontes ATX As fontes ATX tem um fio azul para ligação, e não tem o botão de liga desliga. Para utilizar uma fonte destas o Fio azul deve estar conectado no GND(fio preto). Pode se deixá-lo conetado diretamente (quando ligar a tomada a fonte liga), ou indiretamente por uma chave push-buttom pequena(a chave controla a fonte). Está fonte tambem forneçe tensões de 3,3V, que não são muito utilizadas no aeromodelismo.

MONTAGEM DE ASAS

Asas As asas têm várias características importantes que determinam como o modelo vai voar. Existe uma nomenclatura específica para as partes da asa. Abaixo está um pequeno glossário: Bordo de ataque: a extremidade dianteira da asa, geralmente arredondada; Bordo de fuga: a extremidade traseira da asa, geralmente bem fina; Nervuras: estruturas de madeira ou material sintético que determinam o perfil da asa; Longarinas: vareta, tubo ou ripa interna à asa, em direção perpendicular às nervuras, com a função de dar resistência à asa e evitar que se dobre com o peso do avião; Entelagem: cobertura da estrutura asa com material flexível; Chapeamento: cobertura da estrutura da asa com material rígido; Montantes: vareta, tubo ou ripa que apoiam externamente a asa, ligando-a à fuselagem ou a outra asa (em caso de biplanos). Aeromodelos de treinamento geralmente têm asa com diedro ou poliedro. Diedro é quando a asa tem um ligeiro formato de V. Poliedro é quando ela é reta na parte central, subindo nas laterais. Nos dois casos o efeito é de estabilização, e se o modelo for deixado por conta própria sem outros fatores para atrapalhar ele tende a ficar com a asa na horizontal. Este efeito é mais acentuado nas asas poliédricas, mas nem sempre o efeito estético fica bom no tipo de modelo que se pretende construir. O perfil da asa também determina como será o vôo. Modelos de treinamento têm perfil plano-convexo (asa plana na parte inferior e convexa na parte superior) ou undercamber (côncava na parte inferior e convexa na parte superior). Dentro destes parâmetros a forma do perfil vai determinar o arrasto e sustentação, mas basicamente estes perfis geram bastante sustentação em vôo nivelado e nenhuma sustentação ou sustentação negativa em vôo de dorso. Isto significa que o avião dificilmente ficará de cabeça para baixo por muito tempo, facilitando a vida do piloto novato. Aviões mais rápidos ou acrobáticos usam perfil simétrico ou semi-simétrico, curvo dos dois lados. Asas deste tipo permitem vôo de dorso, pois conseguem gerar sustentação mesmo invertidas. Os grupos básicos de perfil (undercamber, plano-convexo, semi-simétrico, simétrico) estão exemplificados abaixo. Perfis lentos: Perfis acrobáticos: A asa tem várias medidas básicas: Envergadura: É a distância entre as extremidades esquerda e direita da asa; Corda: É a distância entre a ponta do bordo de ataque e a ponta do bordo de fuga da asa, pode ser expressa como percentual da envergadura; Espessura: é a altura da asa, geralmente expressa como percentual da corda; Área alar: é o produto da multiplicação da corda pela envergadura. A sustentação da asa é diretamente proporcional à área e diretamente proporcional ao quadrado da velocidade, portanto modelos lentos geralmente têm asas com uma grande área; Carga alar: é a razão entre peso do modelo em relação à área da asa, e determina a velocidade do avião. Mais peso precisa de mais sustentação, que pode ser obtida aumentando a velocidade ou aumentando a asa. Modelos lentos têm baixa carga alar, entre 12g/dm2 e 20g/dm2, modelos rápidos têm carga alar mais alta, acima de 25g/dm2. Todo avião forma um vórtice (redemoinho) de turbulência na ponta da asa, que atrapalha o vôo e aumenta a resistência do ar. Como isto não acontece no meio da asa, quanto menor a corda em relação à envergadura, menor será o arrasto. Por isto, planadores têm asa com corda entre 10% e 15% da envergadura, pois precisam de bastante sustentação com o mínimo possível de arrasto. Embora o arrasto diminua, o ângulo máximo de ataque que a asa aguenta antes de estolar também é pequeno, portanto planadores não podem voar com o nariz para cima, como fazem os fun-fly. Uma corda maior aumenta o ângulo de ataque em que ocorre o estol, permitindo vôos "pendurados". Para aviões de treinamento ficar no meio-termo é o melhor, com corda de 15% a 20% da envergadura. Asas muito grossas dão boa sustentação, mas muito arrasto. Asas muito finas dão menos sustentação, e menos arrasto. Para um vôo tranquilo em um modelo escala, asas em torno de 8% são uma boa opção. Para treinamento experimentei bons resultados com 10% a 15%, para um vôo lento e estável. Como a sustentação e o arrasto crescem exponencialmente com a velocidade, se o avião entrar em mergulho uma asa neste formato vai freá-lo e fazê-lo voltar ao vôo horizontal. Fixando-se o perfil e ângulo de ataque, a força de sustentação da asa será proporcional à área da asa, e proporcional ao quadrado da velocidade. Portanto, para um modelo para iniciante, uma asa maior permite um vôo mais lento. Ângulo de incidência O ângulo formado entre a corda da asa e a direção do vôo do avião é chamado de ângulo de incidência. Novamente existem diferenças entre aviões de treinamento, que têm ângulo de incidência positivo e acrobáticos, que geralmente têm incidência zero. Este ângulo é medido a partir da reta fictícia que vai da extremidade mais à frente do bordo de ataque até a ponta do bordo de fuga, e não a partir da parte plana da asa. Se o avião for feito a partir de uma planta, este ângulo já foi previsto pelo projetista. Se for um projeto experimental, tente valores entre 2° e 5°, variando até obter o resultado desejado. Apesar de provavelmente voar mesmo com a incidência errada, se este ângulo for muito grande ou muito pequeno, obrigará a deixar o profundor picado (tentando descer o nariz do avião) ou cabrado (tentando subir o nariz do avião), aumentará a área frontal do avião ao fazê-lo voar com o nariz para cima ou para baixo, aumentará o arrasto e poderá deixar o modelo com tendência a estolar ou mergulhar. Calculadora de área e carga alar Dados básicos Envergadura cm Área alar Peso do modelo g Carga alar Medida Raíz Ponta Média Percentual Corda Espessura ConstruçãoExistem vários tipos de materiais e técnicas de construção que podem ser usados, cada um com características e técnicas diferentes. Como é algo muito pessoal, cada modelista escolhe o que mais lhe agrada, mas para iniciar recomendo isopor ou depron, pela maior resistência a quedas e facilidade de conserto no local de vôo. IsoporSão usadas placas de isopor com densidade P3 a P6 (os menos densos são muito fracos para uso em modelos). O corte é feito com fio quente e o acabamento com lixa. Pode ser colado com cola quente, cola de isopor ou cola epóxi, e geralmente é um material muito resistente e de fácil conserto. Basta colar as partes quebradas e o modelo volta a voar. As longarinas podem ser uma vareta de fibra de vidro entre 1mm e 2mm do tipo que atualmente é usado em pipas e gaiolas de pássaros na parte superior, no ponto mais alto do perfil, e outra na parte inferior na mesma direção. Isto dá uma asa muito firme, leve e forte. Pode ser usado bambú também, com o mesmo resultado. Na seção de tutoriais tem um guia de como fazer um arco para corte de isopor (clique aqui) Depron São usadas placas de depron de 2 a 4mm. As mais grossas podem ser usadas para estruturas ou superfícies de comando e as mais finas para fazer as asas e fuselagens. A técnica básica é cortar com estilete e colar com cola epóxi ou cola quente. Pessoalmente uso cola quente pelo preço, facilidade de uso e rapidez da secagem. Para fazer uma asa em depron, siga os seguintes passos: Corte as nervuras em depron 4mm seguindo o perfil da planta, uma nervura a cada 15cm, aproximadamente; Corte um painel de depron 2mm com a largura da envergadura da asa, com as fibras do depron na horizontal, e a altura igual ao dobro da corda mais 4cm; Risque no painel uma linha horizontal na altura da corda da asa, medida a partir da parte inferior; Risque no painel linhas verticais indicando a posição das nervuras. Use uma nervura central, um par de nervuras sobre a linha lateral da fuselagem, e nervuras adicionais a cada 15cm, até a ponta da asa; Cole a parte mais plana das nervuras sobre as linhas marcadas, alinhando o bordo de ataque com a linha horizontal; Transpasse por dentro das nervuras longarina de vareta bambú, fibra, tubo de vara de pesca ou outro material leve e forte, para dar resistência à asa. Dobre a parte superior do painel sobre as nervuras, colando-as e fechando a asa. Após fechada a asa ficará leve e resistente o suficiente para modelos até 1Kg. Para um roteiro passo-a-passo de como fazer uma asa em depron, clique aqui. BalsaSão usadas varetas, blocos e placas de madeira de balsa, compensado naval, cedro e outras madeiras. A estrutura do avião é feita com madeira e depois coberta com chapas finas de balsa, ou entelada com seda japonesa ou materiais plásticos. É a técnica mais complicada, mas também a que permite fazer modelos mais leves e fiéis à escala. Como madeira quebrada não é fácil de consertar qualquer batida resulta em grandes danos, sendo recomendada para pilotos mais experientes ou para aprender com instrutor.

AEROMODELISMO TEORICO

Aeromodelismo - Teórico e PráticoCopyright © 2004/2005, José Carlos Rodrigues e Clube de Aeromodelismo de Lisboaversão digital publicada no site do CAL: http://clubeaerolisboa.no.sapo.ptÓtimo livro sobre aeromodelismo, de leitura agradável e recomendável para quem quer aprender a fundo como funcionam nossos modelos.Agradecemos especialmente ao Sr. José Manuel Padinha Colarejo por torná-lo disponível. Baixar

SIMULADOR DE VOO

/C Model Airplane Simulator (FREE FOR DOWNLOAD) INTRODUÇÃO Aprimore sua capacidade de aeromodelista com esse simulador. Nós, da AeroHobby Magazine, estamos apresentando esse simulador para vocês. Esse é um simples simulador de aermodelo R/C para todos que estão interessados em testar suas habilidades de aeromodelista sem nenhum risco de danos. Nenhuma habilidade prévia é necessária. Esse programa não é shareware: É freeware! Esperamos que você tenha bons tempos com esse simulador. Claro que não é comparável a outros produtos comerciais, mas é divertido e está aqui. A intenção principal dos produtores era criar uma ferramenta praticante para controlar o aeromodelo quando ele está voando por você. DOWNLOAD O pacote provem de dois arquivos zipados. É necessário que se tenha o PKUNZIP ou WINZIP . Observe abaixo os arquivos e clique-os para que seja feito o download: RCSIM14.zip RCSIM14s.zip Especificamentos mínimos necessários Computador 486, 8MB RAM, 2 mega de espaço livre no HD, MS-DOS, JOYSTICK, TECLADO. INSTALANDO Em seu programa compactador ZIP, descompacte os arquivos em qualquer diretório (Ex: c:\rcsim). Obs: Os arquivos têm que ser descompactados no mesmo diretório! COMANDOS Controles do teclado: '2' - o nariz sobe, cabra '8' - o nariz desce, pica '4' - aileron para a esquerda '6' - aileron para a direita '5' - Apertando isso, os comandos se centram (Aperte 'NumLock' para usar essas teclas) 'a' - Aumenta potência do aeromodelo (+10%) 'z' - Diminui potência do aeromodelo +(10%) 's' - potência ao máximo (100%) 'x' - potência ao mínimo (0%) 'j' - habilita o joystick, quando esse não está habilitado 'i' - Recomeça a posição de decolagem. Aperte essa tecla se você cair com o aeromodelo 'q' 'ESC' - Sai do simulador RODANDO Para jogar (o termo mais correto é simular) é necessário o uso do joystick, preferencialmente o manche. Pode-se jogar pelo teclado, mas os comandos são mais complicados. Vá ao Prompt do MS-DOS (INICIAR/PROGRAMAS), e digite: c:\rcsim (APERTE ENTER) Obs: ou digite o diretório em que você instalou ele. Nesse diretório, ao digitar dir.pla , aparecerá a lista de aeromodelos contidos no simulador: trner386.pla (NÃO RODE ESSE AEROMODELO) trner486.pla (TREINADOR) toad486.pla (TREINADOR com aileron mais sensível) glider.pla (PLANADOR, ele irá iniciar no ar. Ganhe altura e tire o motor) clipwing.pla (aeromodelo acrobático e veloz, necessita-se de muita experiência e agilidade nos comandos para operá-lo) digite: rcsim_88 (nome do aeromodelo contido acima .pla) (APERTE ENTER) Irá aparecer a tela de abertura (ENTER novamente) Divirta-se!!!

CONSTRUÇAO DE UM CORTADOR DE ISOPOR

construi um cortador de isopor caseiro, vou tentar explicar como fiz, e espero que possa ser de ajuda para alguém. Material necessário:- 01 resistencia de ducha termo system;- Ripas de madeira de 2 x 3 cm ( madeira dura tipo angelim)- 2 mts de fio paralelo 1,5- fita isolante- solda estanho- parafusos para madeira médios- 01 parafuso com porca e ruela (opcional)- 01 fonte de computador- terminais de fios (opcional)- 2 metros de arame fino- ganhos para parede (opcional)Usei uma resistencia velha de ducha eletronica termo system:Desenrolei e deixei bem esticada durante um dia:Usei um pedaço de ripa 3x2 de 1 metro e dois de 35 cmParafusei os menores nas extremidades do maior, formando uma letra H, com 25 cm para cima e 10 para baixo:Prendi ganchos nas partes inferiores internas de cada perna do H, que irá servir para ajudar a esticar a resistencia.Prendi uma arame em cada ganho e no meio usei um esticador para cercas, que irá regular a tensão.Em um dos lados na parte superior do H, fiz um pequeno furo para passar a resistencia e dei um nó, deixando um pedaço sobrando para fazer as ligações elétricas:Na outra extremidade, fiz um furo um pouco maior para passar um parafuso, o qual furei na ponta para passar e prender a resistência, e no outro lado ele fica preso com uma ruela e porca, que servirá para esticar a resistência, assim como afinar um violão.Desse lado usei outro conector para fazer a ligação elétrica a resistência, mas é possível apenas soldar o fio direto.Agora a parte elétrica:Uma Fonte de PCPara ligar a fonte é preciso fechar um curto nos fios verde e preto no conector maior (que liga a placa mãe do PC):Usei um pedaço de estanho, mais curto que esse da foto e depois isolei bem com fita. Agora a fonte liga direto na tomada. Se quiser é possível instalar uma chave lig./desl. ou usar uma fonte que já vem com chave atrás.Os dois fios paralelos de 1,5 são soldados as extremidades da resistência e presos na madeira até se juntarem em um dos lados do arco, como vc preferir:Depois que estiver com os dois fios passados e juntos, basta soldá-los a qualquer conector da fonte, usando o fio amarelo e o preto ( 12 Volts ). É uma tensão segura, não dá choque, não queima, e esquenta na medida para cortar o isopor.Estique bem a resistência, apertando o parfuso em cima e o esticador em baixo, vai ficar igual a uma corda de guitarra, ou um berimbal. Fica bem esticado mesmo e corta que é uma maravilha.Obs. Quanto menor o arco, maior será o calor, para esse tamanho de 1 metro, ficou na medida a tensão de 12 volts. Caso queira um maior ou menor, a fonte do PC também solta 24 e 5 volts. (fio azul e vermelho).Ele pronto: